SYSTEME
TRANSSTOCKEUR TS
GTI Systèmes
TABLE DES MATIERES

A. Mise en situation ... 4
B. Description du système didactique .. 5
C. Point de vue fonctionnel ... 6
 1. Analyse fonctionnelle externe ... 6
 a. Fonction globale ... 6
 b. Enoncé des Fonctions de service 6
 c. Eléments du Cahier des charges fonctionnel 7
 2. Analyse fonctionnelle interne ... 8
 a. Fonctions et solutions techniques 8
 b. Flux de matières, d’énergies et d’informations 9
 c. Schéma de principe technologique 11
D. Point de vue matériel ... 12
 1. Modèles numériques des sous ensembles mécaniques 12
 2. Mise en plan, dessins d’ensemble et nomenclature 12
 3. Données constructeur des constituants 13
 a. Actionneurs .. 13
 a. 1. Motoréducteur Spiroplan X 20 DR 63 S4 (Translation X) 13
 a. 2. Servomoteur Parvex RX 320 E et frein (Translation Z) 14
 a. 3. Vérin sans tige 446 50008 STB 40A 230 DMA (Translation Y) ... 16
 b. Capteurs ... 18
 b. 1. Codeur incrémental rotatif axe Z Ideacod GZT4 18
 b. 2. Codeur incrémental linéaire HOERBIGER ORIGA Type 945 Axe X ... 20
 b. 3. Détecteurs ILS Vérin Joucomatic 20
 b. 4. Capteur de prise d’origine XS1 N08 PA 340 Télémécanique (Mise en réf) ... 21
 b. 5. Capteur de présence caisse XU1N 18PP340 Télémécanique 23
 b. 6. Interrupteurs de surcourse XCK-T 102 Télémécanique 26
 b. 7. Détecteur du poste de chargement XUM-L 0259 Télémécanique 27
 b. 8. Générateur tachymétrique Parvex axe Z: 29
 c. Eléments de transmission et d’adaptation 29
 c. 1. Poutre de guidage X .. 29
 c. 2. Chariot CTP 1 (Translation X) 30
 c. 3. Guidage linéaire INA MLF 52145 ZR (Translation Z) 31
 4. Schémas électriques et pneumatiques, plans d’implantation et nomenclature 32
 5. Rapport d’essais mécaniques et électriques 47
E. Point de vue temporel ... 47
 1. Note de Mise en marche .. 47
 a. Procédure de mise en marche 47
 b. Identification des signaux de la colonne de signalisation 48
 c. Mode manuel .. 49
 d. Mise en référence ... 49
 e. Mode configuration .. 49
 e. 1. Paramètre CONFIGURATION 50
 e. 2. Paramètres AXE X Acc et AXE Z Acc 50
 e. 3. Paramètres AXE X Vmax et AXE Z Vmax 50
 e. 4. Paramètres AXE X Gain et AXE Z Gain 50
 e. 5. Récapitulatifs des réglages 50
 e. 6. Paramètre SIMULTANEE .. 51
 e. 7. Paramètre PARAMETRAGE 51
 e. 8. Lecture emplacement ... 51

Dossier technique Transstockeur / version 2006 Page 2
Académie de Strasbourg
f. Mode automatique 51
 f. 1. Chargement - Déchargement des bacs gerbables 52
 f. 2. Stockage .. 52
 f. 3. Déstockage .. 52

 g. Quelques remarques. ... 53

 h. Procédure de mise hors énergie 53

 2. Comportement temporel (GRAFCET, GEMMA) 54
 a. Programme fonction d’usage Transstockeur 54
 b. Affectation des touches et messages du terminal de dialogue 58
 c. Grafcets de gestion ... 61
 d. Stockage .. 63
 d. 1. Stockage affecté ... 63
 d. 2. Stockage banalisé ... 64
 e. Destockage .. 65
 e. 1. Destockage affecté .. 65
 e. 2. Destockage banalisé .. 65
 f. Affectation des compteurs ... 67
 g. Gestion des consignes de déplacement 67
 g. 1. Adresse des compteurs .. 67
 g. 2. Principe de déplacement relatif pour la prise et la pose d’un bac 67
 g. 3. Envoi des valeurs de consigne position des axes X et Z 67

 F. Point de vue organisationnel ... 71

 G. Documents d’exploitation ... 71
 1. Notice de mise en service ... 71
 a. Vérifications MECANIQUES OU ELECTRIQUES 71
 b. Mise sous tension .. 71
 2. Notice de maintenance ... 71
 a. Entretien périodique ... 72
 b. Procédure de dégagement des axes Z et X 72
 c. Procédure de dépose / Pose des pignons de levage 72
 d. Montage de pignons pour un rapport de 1.25 73
 d. 1. Codeur 360 pts et Rapport 1 .. 73
 d. 2. Codeur 360 pts et Rapport 1,25 74
 e. Montage d’un codeur 500 pts .. 74
 e. 1. Codeur 500 pts et Rapport 1 .. 74
 e. 2. Codeur de 500 pts et Rapport de 1,25 74
 f. Procédure de réglage des galets du Chariot AXE X 75
 g. Procédure de réglage du châssis du chariot X 76
 h. Incident de fonctionnement .. 76
 i. Pièces détachées (Rechange) ... 76
A. MISE EN SITUATION

La société SYDEL conçoit, fabrique et intègre de nombreux matériels d'informatique industrielle et de manutention automatisée :
Elle a proposé une solution à la Société « Collet Tendriade » (1er abattoir de veau en France : 200 000 veaux abattus/an, 30 000 tonnes de viande) permettant de gérer la chaîne de production de viande et de co-produits à destination des grossistes.
B. DESCRIPTION DU SYSTEME DIDACTIQUE

1 CARACTERISTIQUES PRINCIPALES

- Encombrement : L x l x h = 1900 x 1200 x 1700 mm
- Puissance installée : 1.5 kW sous 220V 50 Hz monophasé
- Niveau sonore inférieur à 70 dB
- Masse : 350 kg

MATERIEL CONFORME AUX NORMES CE (Tête de série contrôlée par un organisme agréé – CEP)

2 PARTIE OPERATIVE

2.1 Présentation générale

Structure monobloc en tôlerie mécano soudée, couleur vert et ivoire, de dimensions hors tout :
L x P x H = 1900 x 800 x 1700 mm, comprenant :

- **En partie centrale** :
 - deux supports de fixation réglables pour la poutre horizontale X en alliage léger, de section 140x100mm et de longueur 1,5m, équipée d'un chariot Cx (mouvements droite et gauche) monté sur 10 galets à roulements avec réglage des jeux et entraînement par pignon crémallère portant :
 - un axe vertical Z de hauteur 1,10m, module linéaire à guidage par galets et entraînement par courroie crantée où se déplace un chariot Cz (mouvements montée / descente) recevant :
 - un axe horizontal Y de course 250mm (mouvements avant / arrière), réalisé par un vérin pneumatique sans tige à bandes et à chariot guidé.

- **Sur la partie arrière** :
 - un logement reçoit 5 étagères de dimensions L x P = 1350 x 240 mm au pas de 200 mm et permet de stocker 18 bacs gerbables de 310 x 210 x 150 mm (10 fournis avec le SYSTEME). Un emplacement spécifique est réservé au chargement / déchargement. Un module automatique réception-expédition prise-poser est proposé en option.

- **Sur la partie avant** :
 - un écran de protection en plexiglas sur ossature aluminium, avec deux portes d'accès à interrupteur de sécurité et ouverture totale sur la longueur du système, délimite la zone d'évolution des parties mobiles.

- **Sur la droite** :
 - l'armoire de commande, équipée d'une porte munie d'un plexiglas pour visualiser les constituants, et le pupitre de commande sont intégrés à la structure générale du système.

2.2 Actionneurs et capteurs

- **Axe X horizontal (gauche / droite) comprenant** :
 - un moto réducteur frein courant alternatif P=120W asynchrone triphasé avec variateur U/f (réducteur roue et vis sans fin à engrenage de type "spiroplan"),
 - un capteur de déplacement linéaire, incrémental optoélectronique résolution 1mm, technique ruban avec tête de lecture, autorisant une meilleure répétitivité de la mesure sur de grandes longueurs.
 - un détecteur inductif nécessaire pour définir la position initiale du capteur de déplacement,
 - deux interrupteurs de position solidaire du chariot Cx limitant la course externe du chariot Cx.

- **Axe Z vertical (montée / descente) comprenant** :
 - un moto réducteur courant continu P=283W à aimant permanent avec dynamo tachymétrique et frein y compris variateur et transformateur,
 - un ensemble de deux engrenages assure en sortie du motoréducteur la transmission du mouvement vers le module linéaire Z, la modification du rapport de réduction étant facile par échange de ces pignons.
 - un codeur incrémental : (1 voie : 360 points/tour) monté sur l'axe de sortie réducteur et facilement interchangeable par un codeur de résolution différente (voir. paragraphe 6.3), assure le contrôle de la position du chariot Cz,
 - deux détecteurs fixés sur un guide, limitent la course externe du chariot Cz.

- **Axe Y horizontal (avant / arrière) comprenant** :
 - un vérin pneumatique sans tige à bandes, à chariot guidé avec son distributeur et ses détecteurs de position avant / arrière.

3. PARTIE COMMANDE

3.1 Automatique

Un Automate Programmable Industriel TSX37 100/240 Vca comprenant :
- une carte 16E 24 Vcc 12S relais bornier
- une entrée logique 12E 24Vcc bornier
- une carte 8S relais bornier
- une extension sortie analogique + ou -10V
- une pile

3.2 Dialogue Homme/Machine

Un terminal de dialogue est relié à la prise auxiliaire de l'API.
C. POINT DE VUE FONCTIONNEL

1. ANALYSE FONCTIONNELLE EXTERNE

a. Fonction globale

Configuration initiale

Energie
- Electrique : 230 V, 50Hz
- Pneumatique : 3 bar

Réglages :
- Loi de vitesse
- Position capteurs
- Variateur

STOCKER ou DESTOCKER des caisses référencées suivant la demande

Ordres d’exploitation :
- de stockage / déstockage
- de maintenance

Caisse à Stocker / déstocker

Energie

FC 1
- Etre adapté au volume du laboratoire

FC 2
- Réaliser le processus en toute sécurité

FC 3
- Etre alimenté en énergie

FC 4
- Réster à l’ambiance extérieure

FC 5
- Etre adapté aux conditions d’utilisation

b. Enoncé des Fonctions de service

TRANSSTOCKEUR

STI

Utilisateur

Conditions d’utilisation

Ambiance extérieure

FP 1
- STOCKER ou DESTOCKER des caisses référencées suivant la demande
c. Éléments du Cahier des charges fonctionnel

<table>
<thead>
<tr>
<th>Fonctions de service</th>
<th>Critère</th>
<th>Niveau</th>
<th>Flexibilité</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP1 : STOCKER ou DESTOCKER des caisses référencées suivant la demande</td>
<td>Durée d'une vacation Caisse : ♦ Nombre ♦ Dimensions en mm ♦ Masse</td>
<td>Inférieure à 30s 18 310x210x150 maxi 9 kg maxi</td>
<td></td>
</tr>
<tr>
<td>FC 3 : Etre alimenté en énergie</td>
<td>Puissance électrique installée Energie pneumatique ♦ Pression régulée ♦ filtre</td>
<td>1kW sous 220 V Monophasé 50 Hz maxi 3 bar maxi</td>
<td></td>
</tr>
<tr>
<td>FC 5 : Etre adapté aux conditions d'utilisation</td>
<td>Accélération des masses en mouvement</td>
<td>0.5 m/s² nominal</td>
<td></td>
</tr>
</tbody>
</table>
2. ANALYSE FONCTIONNELLE INTERNE

a. Fonctions et solutions techniques

FP 1: STOCKER une caisse suivant la demande

FT 1: Détecter la présence d’une caisse

FT 2: Déplacer la caisse

FT 3: Référencer la caisse

FT 4: enregistrer la demande

Capteur optique et capteur inductif

Axe X, Y, Z

Automate TSX 37

Console

Fonction FT 2 : Déplacer la caisse

Déplacer suivant X

Déplacer suivant X, Z

Déplacer suivant Z

Déplacer suivant Y

Transforme l’énergie électrique en énergie mécanique

Adapter la vitesse et le couple

Transformer le mouvement de rotation en mouvement de translation

Guider le chariot X

Acquérir et coder le déplacement : V et X

Transformer l’énergie électrique en énergie mécanique

Adapter la vitesse et le couple

Transformer le mouvement de rotation en mouvement de translation

Guider le chariot Z

Acquérir et coder le déplacement : V et Z

Transformer l’énergie pneumatique en énergie mécanique

Guider sur l’axe Y

Acquérir et coder

Moteur Asynchrone triphasé

P = 0.12 kW, Masse 7 kg

Réducteur roue et vis type S.E.W, Spiroplan W 20

r = 1/24.5 rendement 0.85

Crémaillère + Pignon

54 dents, module 2

Poutre horizontale (l utile=1100 mm)

+ 10 galets à roulements

Capteur incrémental de déplacement

Détecteur inductif prise origine

2 interrupteurs fin de course XCKT

Moteur courant continu

P=283 W

Réducteur épicycloïdal à 2 étages

rapport de réduction :1/16

rendement :

Couple d’engrenages m=2 Z= 54

2 Poulies + Courroie Crantée

Avance 270 mm / tour

Module linéaire INA MLF 52 145 ZR

avec galets de guidage

Dynamo tachymétrique

Codeur incrémental 360 points / tour

2 détecteurs fin de course XCKT

Vérin sans Tige JOUCOMATIC - Référence: STB40A230 DMA

Course 230 mm

Chariot guidé par galets

2 détecteurs ILS de position avant / arrière

Avance 270 mm / tour

Module linéaire INA MLF 52 145 ZR

avec galets de guidage

Dynamo tachymétrique

Codeur incrémental 360 points / tour

2 détecteurs fin de course XCKT

Vérin sans Tige JOUCOMATIC - Référence: STB40A230 DMA

Course 230 mm

Chariot guidé par galets

2 détecteurs ILS de position avant / arrière
b. Flux de matières, d’énergies et d’informations

DIAGRAMME SADT niveau A 0

STOCKER / DESTOCKER des CAISSES référencées
Fonction : Déplacer suivant l’Axe X

DIAGRAMME SADT niveau A 2

- **Automate :** Consignes
- **Initialisation**
 - Mise sous tension
 - Ordre M/A
- **Présence d’énergie électrique (frein à manque de courant)**
- **Variateur**
- **Motoréducteur X**
- **Pignon / crémaillère**
- **Caisse en X1**
- **Energie électrique**
- **Energie mécanique**
- **Energie mécanique restituée pendant le freinage**
- **Capteurs de position**
- **Energie électrique**
- **Image de la position**

DEPLACER SUIVANT L’AXE X
c. Schéma de principe technologique

- Pignon
- Crémaillère
- Moteur Translation x
- Réducteur Translation
- Génératrice tachymétrique z
- Courroie crantée
- Pince de préhension
- Poulie crantée de renvoi
- Poulie crantée d'entraînement
- Pignons d'adaptation z Rapport 1/1
- Codeur incrémental rotatif axe z
- Codeur incrémental de translation x
- Pignon
- Crémaillère
- Casiers de rangement
- Frein z
- Moteur Translation x
- Frein Translation x
- Réducteur Translation
D. POINT DE VUE MATERIEL

1. MODELES NUMERIQUES DES SOUS ENSEMBLES MECANIQUES

2. MISE EN PLAN, DESSINS D’ENSEMBLE ET NOMENCLATURE
3. DONNEES CONSTRUCTEUR DES CONSTITUANTS

a. Actionneurs

a. 1. Motoréducteur Spiroplan X 20 DR 63 S4 (Translation X)

CATalogue Informatisé SEW

Données supplémentaires moteur et frein

<table>
<thead>
<tr>
<th>DONNEES MOTEUR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Désignation catalogue</td>
<td>DFR63S4</td>
</tr>
<tr>
<td>Puissance nominale [kW]</td>
<td>0,12</td>
</tr>
<tr>
<td>Facteur de service</td>
<td>81-100%</td>
</tr>
<tr>
<td>Vitesse nominale [t/min]</td>
<td>1390</td>
</tr>
<tr>
<td>Nbr pols</td>
<td>4</td>
</tr>
<tr>
<td>Fréquence nominale [Hz]</td>
<td>50</td>
</tr>
<tr>
<td>Tension nominale [V]</td>
<td>220 / 400</td>
</tr>
<tr>
<td>Courant nominal [A]</td>
<td>0,39</td>
</tr>
<tr>
<td>Cos (phi)</td>
<td>0,99</td>
</tr>
<tr>
<td>Courant de démarrage [%]</td>
<td>230</td>
</tr>
<tr>
<td>Moment de démarrage M/Mn [%]</td>
<td>240</td>
</tr>
<tr>
<td>Rapport du couple d'accélération M/Mn [%]</td>
<td>220</td>
</tr>
<tr>
<td>Jumd sans frein [kg]</td>
<td>0,00036</td>
</tr>
<tr>
<td>Jumd avec frein [kg]</td>
<td>0,00048</td>
</tr>
<tr>
<td>Sauteur lourd [kg]</td>
<td>0,00072</td>
</tr>
<tr>
<td>Cadence de démarrage à vide [l/min]</td>
<td>10300</td>
</tr>
<tr>
<td>Bout d'arbre [mm]</td>
<td>20x40</td>
</tr>
<tr>
<td>Poids moteur sans frein [kg]</td>
<td>6,1</td>
</tr>
<tr>
<td>Couple freinage max. frein monodisque [N.m]</td>
<td>2,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>MOTORÉDUCTEUR SPIROPLAN</th>
<th>Prix unitaire</th>
<th>Plus-value</th>
<th>Prix total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>W20DHE354</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puissance nominale [kW]</td>
<td>0,12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitesse motore [t/min]</td>
<td>1390</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitesse de sortie [t/min]</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facteur de service</td>
<td>2,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tension nominale [V]</td>
<td>220/400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courant nominal [A]</td>
<td>0,39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schéma de branchemont</td>
<td>DT13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indice de protection</td>
<td>IP54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couple de freinage [Nm]</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commande de frein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position de montage</td>
<td>M10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flasque [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poids [kg]</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Données CONSTRUCTEUR DES CONSTITUANTS

Académie de Strasbourg
a. 2. Servomoteur Parvex RX 320 E et frein (Translation Z)

TYPES MOTEURS	Couple permanent en rotation lente	Courant permanent en rotation lente	Tension d'alimentation de définition	Vitesse de définition	Courant impulsion	P.E.M. par 1000 tr/min (à 23°C)	Constante de couple par ampère	Résistance du bobinage (à 23°C)	Inductance du bobinage	Moment d'inertie du rotor	Charge axiale maximale admissible	Charge radiale maximale admissible	Masse du moteur		
Symboles	Nm	A	V	tr/min	A	V	Nm/A	Ω	mH	J	Th	Fas	Frs	M	
Unités	Nm	A	V	tr/min	A	V	Nm/A	Ω	mH	J	Th	Fas	Frs	M	
RX 120 L	0,285	2,8	44,3	3800	9	11,2	0,107	2,7	7,5	5	11	16	18	1,35	
RX 130 H	0,4	3,6	46	3800	12,5	12	0,115	1,84	5,3	8,8	11	16	20	1,6	
RX 320 E	1,01	78	54	3000	20	15,2	0,145	0,56	5,3	50	23	45	4	5,2	
RX 330 C	1,54	9,4	59	2900	26	17,7	0,17	0,45	4,6	72	13,3	23	50	5,2	
RX 520 K	2,7	7,7	119	2800	20	38	0,36	0,76	5,4	128	18,2	30	80	6,6	
RX 530 F	3,7	10,3	116	2700	30	39	0,37	0,48	3,6	174	18	30	85	8,7	
RX 620 J	5	10,5	134	2400	27	52	0,49	0,49	4,3	350	26,5	40	95	13	
RX 630 E	7,8	16	134	2400	45	52	0,5	0,246	2,6	500	26	40	100	18,5	

AXL (axe lent)
L'ensemble de la gamme des servomoteurs RX (sauf RX1) peut-être équipé de réducteur planétaire «GBP» de rapport 1/5 ou 1/25 pour fournir un axe lent à très fort couple dans un encombrement très réduit.

** FREIN DE MAINTIEN A MANQUE DE COURANT **

Le frein bloque l'arbre moteur à l'arrêt (utilisation statique).

Utilisation dynamique en cas d'arrêt d'urgence.

<table>
<thead>
<tr>
<th>Moteur</th>
<th>Couple de maintien</th>
<th>Tension (10%)</th>
<th>Courant</th>
<th>Inertie</th>
<th>Masse</th>
</tr>
</thead>
<tbody>
<tr>
<td>à 20°C</td>
<td>à 150°C</td>
<td>Nm</td>
<td>Nm</td>
<td>V/Ω</td>
<td>A</td>
</tr>
<tr>
<td>RX1</td>
<td>1</td>
<td>0,9</td>
<td>24</td>
<td>0,46</td>
<td>1</td>
</tr>
<tr>
<td>RX3</td>
<td>1,5</td>
<td>1,4</td>
<td>24</td>
<td>0,46</td>
<td>1</td>
</tr>
<tr>
<td>RX5</td>
<td>6</td>
<td>5,5</td>
<td>24</td>
<td>0,54</td>
<td>5,3</td>
</tr>
<tr>
<td>RX6</td>
<td>12</td>
<td>11,5</td>
<td>24</td>
<td>0,88</td>
<td>15,7</td>
</tr>
</tbody>
</table>
Servomoteur Parvex RX 320 E : Caractéristiques thermiques

permanent thermique
fonctionnement impulsionnel

Resolver optionnel

Les servomoteurs RX peuvent être équipés d'un resolver. Les signaux émis par le resolver génèrent une information vitesse (rôle habituellement rempli par une dynamo tachymétrique) et, de plus, peuvent être utilisés pour élaborer des informations simulant un codeur optique de 1024 traits par tour.

Codeur incrémental Parvex optionnel

Les signaux sont complémentés A, A, B, B, avec top0 et top0. Alimentation 5 V TTL. Toutes les sorties sont pilotées par amplificateur de ligne.

<table>
<thead>
<tr>
<th>Raccordement</th>
<th>K9</th>
<th>C4</th>
<th>C6 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blanc</td>
<td>Marron</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>Blanc/Noir</td>
<td>Vert</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>Bleu</td>
<td>Gris</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>Bleu/Blanc</td>
<td>Rose</td>
<td>1</td>
</tr>
<tr>
<td>top0</td>
<td>Vert</td>
<td>Rouge</td>
<td>3</td>
</tr>
<tr>
<td>top0</td>
<td>Vert/Blanc</td>
<td>Noir</td>
<td>4</td>
</tr>
<tr>
<td>+5 V allm.</td>
<td>Rouge</td>
<td>Marron/Vert</td>
<td>12</td>
</tr>
<tr>
<td>+5 V retour</td>
<td>-</td>
<td>Bleu</td>
<td>2</td>
</tr>
<tr>
<td>0 V allm.</td>
<td>Noir</td>
<td>Blanc/Vert</td>
<td>10</td>
</tr>
<tr>
<td>0 V retour</td>
<td>-</td>
<td>Blanc</td>
<td>11</td>
</tr>
</tbody>
</table>

Le nombre de points peut-être multiplié par 2 ou 3 par la commande numérique.

Solidaire de l'arbre moteur, le codeur K9 est compact. Les charges axiales sur l'arbre sont donc à proscrire.

Le codeur C4 à arbre creux et montage flexible permet un ensemble compact de précision.

Le codeur C6 B est particulièrement bien adapté à une ambiance industrielle sévère grâce à sa protection thermique et mécanique renforcée.
a. 3. Vérin sans tige 446 50008 STB 40A 230 DMA (Translation Y).

Série 446

Type: STB

VERINS SANS TIGE A BANDES

A CHARIOT GUIDE - double effet - Ø 25 à 63 mm

Non prévus ou prévus pour détecteurs magnétiques

SPECIFICATIONS

- **FLUIDE DE COMMANDE**
 - : air ou gaz neutre filtré, lubrifié ou NON
- **PRESION ADMISSIBLE**
 - : 8 bar maxi
- **TEMPERATURE ADMISSIBLE**
 - : -10°C, + 65°C
- **COURSE mini maxi standard**
 - : 100 mm (pour détecteurs)
 - : 3750 mm (Ø 40)
 - : 3400 mm (Ø 50 mm)
 - : 3300 mm (Ø 63 mm)
 - (cours supérieur nous consulter)
- **VITESSE MAXI**
 - : 2 m/s

CONSTRUCTION

- **Tube**
 - : Alliage d'aluminium anodisé
- **Fonds**
 - : Alliage d'aluminium anodisé
- **Chariot mobile**
 - : Alliage d'aluminium anodisé
- **Piston**
 - : Polyamide/alliage léger
- **Joints de piston**
 - : Nitrile (NBR)
- **Support de piston**
 - : Acier estampé, haute résistance
- **Bandes**
 - : Acier inoxydable avec rubans en élastomère
- **Aliment**
 - : Placé à l'extérieur, dans le chariot
- **Tiges de guidage**
 - : En NYLON, autolubrifié
- **Amortissement**
 - : pneumatique, réglable

LONGUEUR D'AMORTISSEMENT

<table>
<thead>
<tr>
<th>Ø 25 mm</th>
<th>Ø 32 mm</th>
<th>Ø 40 mm</th>
<th>Ø 50 mm</th>
<th>Ø 63 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 17 mm</td>
<td>= 28 mm</td>
<td>= 32 mm</td>
<td>= 34 mm</td>
<td>= 50 mm</td>
</tr>
</tbody>
</table>

SELECTION DU MATERIEL

<table>
<thead>
<tr>
<th>Ø Vérin (mm)</th>
<th>VERIN NON PREVU POUR DETECTEUR CODE CODEn VERIN PREVU POUR DETECTEUR à ampoule (ILS) CODE CODEn DETECTEUR à effet Hall CODE CODEn REFERENCE</th>
<th>Ø Raccord</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>446 50 001(3) STB 25 A _ n_ 446 50 006(3) STB 25 A _ n_ 446 50 011(3) STB 25 A _ n_</td>
<td>G 1/8</td>
</tr>
<tr>
<td>32</td>
<td>446 50 002(3) STB 32 A _ n_ 446 50 007(3) STB 32 A _ n_ 446 50 012(3) STB 32 A _ n_</td>
<td>G 1/4</td>
</tr>
<tr>
<td>40</td>
<td>446 50 003(3) STB 40 A _ n_ 446 50 008(3) STB 40 A _ n_ 446 50 013(3) STB 40 A _ n_</td>
<td>G 1/4</td>
</tr>
<tr>
<td>50</td>
<td>446 50 004(3) STB 50 A _ n_ 446 50 009(3) STB 50 A _ n_ 446 50 014(3) STB 50 A _ n_</td>
<td>G 3/8</td>
</tr>
<tr>
<td>63</td>
<td>446 50 005(3) STB 63 A _ n_ 446 50 015(3) STB 63 A _ n_ 446 50 015(3) STB 63 A _ n_</td>
<td>G 3/8</td>
</tr>
</tbody>
</table>

(1) Préciser la course (en mm)
(2) Vérin prévu pour détecteur à ampoule = suffixe DMA, à effet Hall = suffixe DMH
(3) Les détecteurs de position sont à commander séparément (voir pages P265-10 et 11)
(4) 3 possibilités de raccordement pneumatique : frontal, arrière ou latéral

Dossier technique Transstockeur / version 2006

Académie de Strasbourg
ENCOMBREMENTS ET MASSES
VERINS NUS

4 Ø EE x BB

2X + (1)

COTES (mm)

Ø	Verin	A	AA	BB	C	DD	E	EI	EE	GG	H	J	JJ	MI	MX	NK	Q	S	T	U	X	Z	course \(\times 100 \) mm	Masses (kg)
25	40	6	11	60	26	25.4	27.2	M6	56.4	33	55.5	25.5	14	20.3	18.1	41	1/8	120	60	100	M6	1,000	0.240	
32	55.5	12	81.4	36	25.4	28	M6	77.7	40	71.5	25.5	8.5	29.4	48.3	57	1/4	118	59	104.5	M6	2,100	0.570		
40	72.5	10	107.7	46	25.4	41.1	M6	90.7	46	89	98	12.7	33.4	57.3	66	1/4	150	75	150	M6	3,700	0.600		
50	82.5	11	127	57	63.5	31.7	M8	112.8	58	113	95.6	17.5	39.7	73.1	86	3/8	187	93.5	160	M10	6,400	0.950		
63	108	12	152.4	73	76.2	38	M8	139.7	65	143	52.5	25.4	50.5	89.2	108	G 3/8	225	112.5	215	M10	14,500	1.800		

Les vitesses indiquées dans le graphe (I) sont les vitesses finales.
Pour déterminer correctement l'énergie cinétique à amortir il est
important de tenir compte de la vitesse finale.
Si celle-ci ne peut être calculée directement, une estimation raisonnable
consiste à prendre :

\[V_{finale} = 2 \times \text{vitesse moyenne} \]

MOMENTS DE FLEXION/TORSION ADMISSIBLES

<table>
<thead>
<tr>
<th>Ø Verins (mm)</th>
<th>Moments de flexion (en N.m)</th>
<th>Charge (en N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>M_d</td>
<td>M_y</td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>32</td>
<td>13</td>
<td>8.5</td>
</tr>
<tr>
<td>40</td>
<td>56</td>
<td>31</td>
</tr>
<tr>
<td>50</td>
<td>125</td>
<td>94</td>
</tr>
<tr>
<td>63</td>
<td>200</td>
<td>51</td>
</tr>
</tbody>
</table>

Possibilité de performances supérieures avec la version à
double chariot (nous consulter)
b. Capteurs

b. 1. Codeur incrémental rotatif axe Z Ideacod GZT4

CARACTÉRISTIQUES

<table>
<thead>
<tr>
<th>Matériau</th>
<th>Axe : aluminium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capot</td>
<td>Zamac</td>
</tr>
<tr>
<td>Embase</td>
<td>Zamac</td>
</tr>
<tr>
<td>Roulements</td>
<td>Série 688</td>
</tr>
<tr>
<td>Charges maximales</td>
<td>Axial : 10 N</td>
</tr>
<tr>
<td></td>
<td>Radial : 20 N</td>
</tr>
<tr>
<td>Moment d'inertie de l'axe</td>
<td>$\leq 0.1 \times 10^4$ kg.m²</td>
</tr>
<tr>
<td>Couple</td>
<td>$\leq 2 \times 10^3$ N.m</td>
</tr>
<tr>
<td>Vitesse max. en pointe</td>
<td>12 000 mm/s</td>
</tr>
<tr>
<td>Vitesse max. en continu</td>
<td>9 000 mm/s</td>
</tr>
<tr>
<td>Masse codeur (env.)</td>
<td>0,240 kg</td>
</tr>
</tbody>
</table>

CEM

<table>
<thead>
<tr>
<th>EN 50082-2 (1995)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension d'isolement</td>
</tr>
<tr>
<td>Température d'utilisation</td>
</tr>
<tr>
<td>Température de stockage</td>
</tr>
<tr>
<td>Protection CE60529 (1989)</td>
</tr>
<tr>
<td>Tenue chocs (EN6068-2-27)</td>
</tr>
<tr>
<td>Vibrations (EN6068-2-6)</td>
</tr>
<tr>
<td>Couple serrage des vis de l'axe</td>
</tr>
<tr>
<td>Durée de vie mécanique théorique 10° tours (Fase / Fasse)</td>
</tr>
</tbody>
</table>

GZT4 connecté G3R (câble radial)
CODEURS INCREMENTAUX, SÉRIE GZT4, COMPACTIS™

ETAGE DE SORTIE / ALIMENTATION

<table>
<thead>
<tr>
<th>Codeur</th>
<th>2G2</th>
<th>Traitement</th>
<th>Alimentation</th>
<th>Intensité par étage</th>
<th>Consommation à vide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5Vdc ± 10%</td>
<td>40mA max</td>
<td>100mA max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0V</td>
<td>0mA (ts=20mA)</td>
<td>0,5Vdc (ts=20mA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2V</td>
<td>2,5Vdc</td>
<td>2,5Vdc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Codeur</th>
<th>5G5</th>
<th>Traitement</th>
<th>Alimentation</th>
<th>Intensité par étage</th>
<th>Consommation à vide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 à 30Vdc</td>
<td>75mA max</td>
<td>75mA max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0mA (ts=20mA)</td>
<td>0,5Vdc (ts=20mA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1mA (ts=20mA)</td>
<td>0,5Vdc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Codeur</th>
<th>9G5</th>
<th>Traitement</th>
<th>Alimentation</th>
<th>Intensité par étage</th>
<th>Consommation à vide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 à 24Vdc</td>
<td>75mA max</td>
<td>75mA max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0mA (ts=20mA)</td>
<td>0,5Vdc (ts=20mA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1mA (ts=20mA)</td>
<td>0,5Vdc</td>
</tr>
</tbody>
</table>

Protection contre les courts circuits pour les électroniques : 5G5 et 9G5
Protection contre les inversions de polarité pour les électroniques : 5G5

CONNECTIQUE STANDARD

<table>
<thead>
<tr>
<th>G3</th>
<th>Câble PVC 8 fils 8/230/020</th>
<th>WH</th>
<th>BN</th>
<th>GN</th>
<th>YE</th>
<th>GY</th>
<th>PK</th>
<th>BU</th>
<th>RD</th>
<th>Masse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>blanc</td>
<td>brun</td>
<td>vert</td>
<td>jaune</td>
<td>gris</td>
<td>rose</td>
<td>bleu</td>
<td>rouge</td>
<td>général</td>
</tr>
</tbody>
</table>

REFERENCE DE COMMANDE (Exécution spécifique sur demande, ex : bride/électronique/connectique spécifique...)

<table>
<thead>
<tr>
<th>@ axe</th>
<th>Electroniques disponibles</th>
<th>Signaux de sortie</th>
<th>Résolution</th>
<th>Connectique</th>
<th>Orientation connectique</th>
</tr>
</thead>
<tbody>
<tr>
<td>GZT4</td>
<td>2G2, 5G5, 9G5</td>
<td>A, A, A, B, B, 0/0 (0 calibré A et B)</td>
<td>1024</td>
<td>G3 : câble PVC 8 fils</td>
<td>Exemple : R020 : radié câble 2m</td>
</tr>
</tbody>
</table>

| Ex : GZT4 | 06 // 5 G5 9 // 1024 // G3 | R020 |

Résolutions disponibles : 1 2 4 5 8 10 16 20 24 25 27 30 36 40 50 60 64 90 100 120 125 128 144 150 170 180 200 250 300 360 400 500 512 600 720 800 1000 1024
b. 2. Codeur incrémental linéaire HOERBIGER ORIGA Type 945 Axe X

Fournisseur : GMBH Pneumatik
Documentation constructeur non encore rassemblée.

b. 3. Détecteurs ILS Vérin Joucomatic

Série 881

DETECTEUR MAGNETIQUE DE POSITION A AMPouLE (ILS)

pour vérin sans tige à bandes, type STB

FONCTIONNEMENT

Lors de son passage devant le détecteur, l’aimant permanent monté sur le chariot, actionne, sans contact, l’interrupteur à lames souples (ILS). Il est possible de monter un ou plusieurs détecteurs pour contrôler les positions de fin de course du vérin. Ceux-ci s’adaptent dans la rainure longitudinale en queue d’aronde. Ils sont équipés d’un voyant lumineux qui s’allume lorsque le contact est fermé.

Le contrôle de passage en position intermédiaire (vérin en mouvement) doit être effectué par détecteur à effet Hall, voir page suivante.

CARACTERISTIQUES ELECTRIQUES

<table>
<thead>
<tr>
<th>Puissances commutables max.</th>
<th>10 W max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension commutée</td>
<td>3 à 200 Vcc (1) (2)</td>
</tr>
<tr>
<td>Intensité commutée maxi</td>
<td>500 mA</td>
</tr>
<tr>
<td>Resistance des lames</td>
<td>100 mΩ</td>
</tr>
<tr>
<td>Tension de tenue</td>
<td>200 V</td>
</tr>
<tr>
<td>Temps de réponse</td>
<td>< 0,6 ms</td>
</tr>
<tr>
<td>Endurance</td>
<td>jusqu’à 2x10° manoeuvres</td>
</tr>
<tr>
<td></td>
<td>(suivant le courant de charge)</td>
</tr>
<tr>
<td>Temperature ambiante</td>
<td>-40° C à + 70° C</td>
</tr>
<tr>
<td>Protection électrique</td>
<td>Voir ci-dessous</td>
</tr>
<tr>
<td>Enveloppe</td>
<td>polyamide</td>
</tr>
<tr>
<td>Raccordement</td>
<td>1 câble Ø 4 mm - longueur 5 m - 2 conducteurs 0,30 mm²</td>
</tr>
<tr>
<td>Signalisation</td>
<td>Par diode (LED) rouge qui s’allume</td>
</tr>
<tr>
<td></td>
<td>lorsque le contact est fermé (1 mini. 4mA)</td>
</tr>
</tbody>
</table>

(1) La présence du voyant de signalisation entraîne une chute de tension de l’ordre de 3 V.

Nota : le point de fonctionnement doit se situer dans la zone ombrée. Tout dépassement tant en tension qu’en intensité peut entraîner la déterioration du détecteur.

PROTECTION

Polarité à respecter en courant continu :
Fil marron = pôle +
Fil bleu = pôle -

Charge inductive

Charge ohmique

Diode 400 V / 1 A

Protection non nécessaire

CAS PARTICULIER

Détecteurs utilisés en commande directe d’ampoules à incandescence :
La puissance indiquée sur l’ampoule tient compte de la résistance lorsque celle-ci est chaude. Lors de la mise sous tension, ampoule froide, la résistance étant très faible, l’intensité devient très importante et peut dépasser les performances de l’ILS. Il convient donc de tenir compte de la puissance réelle de l’ampoule à l’état froid ou en prévoyant, par exemple, une résistance de préchauffage permanent du filament suivant schéma ci-dessous.

L’approvisionnement et le montage de la diode sont à réaliser par l’utilisateur.

CODIFICATION DU DETECTEUR A AMPouLE (ILS)

<table>
<thead>
<tr>
<th>CODES (2 codes à définir : détecteur + kit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DETECTEUR ILS à sortie de fils, long. 5m</td>
</tr>
<tr>
<td>Ø vérin</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>63</td>
</tr>
</tbody>
</table>
b. 4. Capteur de prise d’origine XS1 N08 PA 340 Télémécanique (Mise en référence Axes X et Z)

Références, caractéristiques, encombrements, raccordements

Détecteurs de proximité inductifs
Série optimum
Boîtier métallique court, en laiton, fileté M8 x 1
Alimentation en courant continu

Appareils noyables dans le métal

<table>
<thead>
<tr>
<th>Portée nominale (Sn)</th>
<th>Portée augmentée</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5 mm</td>
<td>2,5 mm</td>
</tr>
<tr>
<td>1,5 mm</td>
<td>2,5 mm</td>
</tr>
</tbody>
</table>

Références

Type 3 fils PNP NO XS1-N08PA340 XS1-N08PA340 XS1-N08PA340S XS1-N08PA340S
NC XS1-N08PB340 XS1-N08PB340 XS1-N08PB340S XS1-N08PB340S
NPN NO XS1-N08NA340 XS1-N08NA340 XS1-N08NA340S XS1-N08NA340S
NC XS1-N08ND340 XS1-N08ND340 XS1-N08ND340S XS1-N08ND340S

Masse (kg) 0,035 0,035 0,015 0,015

Caractéristiques

Mode de raccordement Par câble 3 x 0,11 mm², longueur 2 m (1) Par connecteur (répères 1 à 9) (2)
Degré de protection IP 87 Suivant connecteur (voir pages 3116/12 et 3116/13)
Domaine de fonctionnement 0,..1,2 mm 0,..2 mm 0,..1,2 mm 0,..2 mm
Reproductibilité 3 % de Sr
Course différentielle 1,..15 % de Sr
Température de fonctionnement -25. - 70°C -25. - 50°C -25. - 70°C -26. - 50°C
Signaillation d’état de sortie DEL annulaire DEL 4 positions à 90°
Tension assignée d’alimentation = 12...24 V
Limites de tension (min/max) = 10...38 V (~ 24 V redressé double alternance filtrée)
Courant continu 0...200 mA avec protection contre les surcharges et les courts-circuits
Tension de déclenchement, état fermé ≤ 2 V ≤ 2 V ≤ 2 V ≤ 2 V
Courant résiduel, état ouvert ≤ 10 mA ≤ 10 mA ≤ 10 mA ≤ 10 mA
Courant consommé à vide 500 Hz 2500 Hz 5000 Hz 2500 Hz
Fréquence maximale de commutation 5000 Hz
Retards à la disjonction ≤ 5 ms ≤ 5 ms ≤ 5 ms ≤ 5 ms
au raccordement 0,1 ms 0,2 ms 0,1 ms 0,2 ms
Raccordements

Notas : pour XS1-N0808S4, sortie NC ou NO sur borne 4
(1) Détecteurs avec autres longueurs de câble
(2) Les repères indiquent les connecteurs et prolongateurs femelles adaptables, voir pages 3116/12 à 3116/16.

Dossier technique Transstockeur / version 2006
Académie de Strasbourg
Capteur de prise d’origine XS1 N08 PA 340 Télémécanique (2/2)

Appareils non noyables dans le métal

<table>
<thead>
<tr>
<th>Portée augmentée</th>
<th>2,5 mm</th>
<th>2,5 mm</th>
<th>2,5 mm</th>
<th>2,5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,020</td>
<td>0,020</td>
<td>0,035</td>
<td>0,016</td>
<td>0,020</td>
</tr>
</tbody>
</table>

Par connecteur (repères 9, 16, 15, 10) (2)
Par connecteur (repères 9, 10, 11, 12, 15, 10) (2)
Par câble, 3x0,11, longueur 2 m (1)
Par connecteur (repères 1 à 8) (2)
Par connecteur (repères 9, 10, 15, 10) (2)

Suivant connectique (voir pages 31161/4 et 31161/5) IP 67
Suivant connectique (voir pages 31161/2 à 31161/5)

0...1,2 mm 0...2 mm 0...2 mm

3 % de Sr
1...15 % de Sr

-25...+70 °C -25...+50 °C -25...+70 °C

DEL 4 positions à 90°
DEL annulaire
DEL 4 positions à 90°

12...24 V

0...200 mA avec protection contre les surcharges et les courts-circuits

<table>
<thead>
<tr>
<th>≤ 2 V</th>
<th>≤ 2 V</th>
<th>≤ 2 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 10 mA</td>
<td>≤ 10 mA</td>
<td>≤ 10 mA</td>
</tr>
<tr>
<td>≤ 5000 Hz</td>
<td>≤ 5000 Hz</td>
<td>≤ 5000 Hz</td>
</tr>
<tr>
<td>≤ 0,2 ms</td>
<td>≤ 0,2 ms</td>
<td>≤ 0,1 ms</td>
</tr>
<tr>
<td>≤ 0,1 ms</td>
<td>≤ 0,2 ms</td>
<td>≤ 0,1 ms</td>
</tr>
</tbody>
</table>

Précautions de mise en œuvre

Distances à respecter au montage (mm)

<table>
<thead>
<tr>
<th>Côte à côte</th>
<th>Face à face</th>
<th>Face à masse métallique</th>
<th>Dans support métallique</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>XS1 noyable</th>
<th>e ≥ 2</th>
<th>e ≥ 18</th>
<th>e ≥ 4,5</th>
<th>d ≥ 8, h ≥ 2,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>XS1 à portée augmentée</td>
<td>e ≥ 2,5</td>
<td>a ≥ 20</td>
<td>e ≥ 4,5</td>
<td>d ≥ 10, h ≥ 1,6</td>
</tr>
<tr>
<td>XS2 non noyable</td>
<td>e ≥ 10</td>
<td>e ≥ 30</td>
<td>e ≥ 7,5</td>
<td>d ≥ 24, h ≥ 5</td>
</tr>
<tr>
<td>Couple de serrage des écrous</td>
<td>≤ 5 Nm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autres réalisations

Détecteurs prêts pour fonctionner à des températures différentes de celles mentionnées au chapitre “Caractéristiques”. Consulter notre agence régionale.
b. 5. Capteur de présence caisse XU1N 18PP340 Télémécanique.

Détecteurs photoélectriques

Osiris® productique, design 18
Corps en plastique ou métallique, cylindrique fileté M18 x 1
Sortie statique

Caractéristiques générales communes, raccordements

Caractéristiques de détection

Portée nominale
- Système barrage : 15 m
- Système réflex : 4 m
- Système réflex polarisé : 1,5 m
- Système de proximité : 10 cm

Environnement

Certifications de produits
- CE, UL, CSA

Température de l’air ambiant
- Pour fonctionnement : -25...+55°C. Pour stockage : -40...+70°C

Tenue aux vibrations
- 25 g, amplitude ± 2 mm (f = 10...55 Hz), selon IEC 68-2-6

Tenue aux chocs
- 30 g, durée 11 ms, selon IEC 68-2-27

Degré de protection
- IP 67 selon IEC 529

Fonctionnement des voyants

| Statut de la sortie (PNP ou NPN) et du voyant (claire pour l’éclair passant du détecteur) | Fonction | Système réflex | Système de proximité
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Claire</td>
<td>Absence d’objet dans le faisceau</td>
<td>Absence d’objet dans le faisceau</td>
<td></td>
</tr>
<tr>
<td>Sombre</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Raccordements

Schémas de branchements (type 3 fils ---)

Raccordement par câble

<table>
<thead>
<tr>
<th>Emetteur</th>
<th>Fonction claire (câble absent)</th>
<th>Proximité</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Récepteur barrage et réflex</td>
<td>Sortie PNP</td>
</tr>
<tr>
<td></td>
<td>Sortie NPN</td>
<td></td>
</tr>
</tbody>
</table>

Raccordement par connecteur

<table>
<thead>
<tr>
<th>Emetteur</th>
<th>Fonction claire (câble absent)</th>
<th>Proximité</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Récepteur barrage et réflex</td>
<td>Sortie PNP</td>
</tr>
<tr>
<td></td>
<td>Sortie NPN</td>
<td></td>
</tr>
</tbody>
</table>
Capteur de présence caisse XU1N 18PP340 Télémécanique (Suite 2/3)

Références, caractéristiques

Design 18

<table>
<thead>
<tr>
<th>Système</th>
<th>Barrage 1</th>
<th>Réflex 2</th>
<th>Réflex polarisé 3</th>
<th>Proximité 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type d'émission</td>
<td>Infrarouge</td>
<td>Infrarouge</td>
<td>Rouge</td>
<td>Infrarouge</td>
</tr>
<tr>
<td>Portée nominale (m)</td>
<td>15 m</td>
<td>4 m (avec réflecteur 50 x 50 mm)</td>
<td>1,5 m (avec réflecteur 50 x 50 mm)</td>
<td>0,10 m</td>
</tr>
</tbody>
</table>

Références des détecteurs à raccordement par câble

Type 3 fils, PNP	Visée axiale	XU2-N18PP340 (1)	XU1-N18PP340 (2)	XU9-N18PP340 (2)	XU5-N18PP340
Type 3 fils, PNP	Visée à 90°	XU2-N18PP340W (1)	XU1-N18PP340W (2)	XU9-N18PP340W (2)	XU5-N18PP340W
Type 3 fils, NPN	Visée axiale	XU2-N18NP340 (1)	XU1-N18NP340 (2)	XU9-N18NP340 (2)	XU5-N18NP340
Type 3 fils, NPN	Visée à 90°	XU2-N18NP340W (1)	XU1-N18NP340W (2)	XU9-N18NP340W (2)	XU5-N18NP340W
Masse (kg)	0,270	0,155	0,155	0,135	

Références des détecteurs à raccordement par connecteur

Type 3 fils, PNP	Visée axiale	XU2-N18PP340D (1)	XU1-N18PP340D (2)	XU9-N18PP340D (2)	XU5-N18PP340D
Type 3 fils, PNP	Visée à 90°	XU2-N18PP340WD (1)	XU1-N18PP340WD (2)	XU9-N18PP340WD (2)	XU5-N18PP340WD
Type 3 fils, NPN	Visée axiale	XU2-N18NP340D (1)	XU1-N18NP340D (2)	XU9-N18NP340D (2)	XU5-N18NP340D
Type 3 fils, NPN	Visée à 90°	XU2-N18NP340WD (1)	XU1-N18NP340WD (2)	XU9-N18NP340WD (2)	XU5-N18NP340WD
Masse (kg)	0,130	0,085	0,085	0,065	

Caractéristiques complémentaires aux caractéristiques générales (page 301B/2)

<table>
<thead>
<tr>
<th>Mode de raccordement</th>
<th>Par câble</th>
<th>Câble diamètre 5 mm, longueur 2 m (3), section des fils : 4 x 0,34 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Par connecteur</td>
<td>Connecteur M12 mâle, 4 broches (prolongateurs et connecteurs femelles adaptables repères 3, 4, 5 voir page 301B/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matériaux</th>
<th>Bobine : tôle nickelé, lentilles : PMMA, câble : PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension assignée d'alimentation</td>
<td>12...24 V avec protection contre l'intervention des fils</td>
</tr>
<tr>
<td>Limites de tension</td>
<td>≤ 10...30 V (condensation comprise)</td>
</tr>
<tr>
<td>Courant de déclenchement</td>
<td>≤ 0,1 mA avec protection contre les surcharges et les courts-circuits</td>
</tr>
<tr>
<td>Tension de déclenchement, état norme</td>
<td>≤ 1,5 V</td>
</tr>
<tr>
<td>Courant consommé sans charge</td>
<td>≤ 30 mA</td>
</tr>
<tr>
<td>Fréquence maximale de commutation</td>
<td>500 Hz</td>
</tr>
</tbody>
</table>

Retards

- A la disponibilité ; ≤ 15 ms ; à l'action ; ≤ 1 ms ; au rétablissement ; ≤ 1 ms.

(1) Fourniture de l'ensemble émetteur + récepteur du système barrage
(2) Réflecteur 50 x 50 mm fourni avec le détecteur système réflex et reflex polarisé
(3) Détecteur avec câble de longueur 5 m : ajouter L5 en fin de référence choisie ci-dessus

Exemple : détecteur XU1-N18PP340 avec câble de 5 m devient XU1-N18PP340L5.
Capteur de présence caisse XU1N 18PP340 Télémécanique Suite 3/3)

Courbes, encombrements, raccordements

Académie de Strasbourg

Encombrements XUe-N18ee-340

(1) DEL

Raccordement du câble

Test de coupure (pour émetteur barrage uniquement)

Emission établie

Emission coupée

Raccordement du connecteur (vue côté broches du détecteur)

Émetteur

Récepteur barrage, réflex et proximité

Académie de Strasbourg
b. 6. Interrupteurs de surcourse XCK-T 102 Télémechanique

Caracteristiques d'environnement

Conformité aux normes:
- IEC 60947-5-1, EN 60947-5-1, UL 508, CSA C22.2 n°14

Certifications de produit:
- UL, CSA

Traitement de protection:
- En exécution normale

Température de l'air ambiant:
- Pour fonctionnement: -25° à +70°C
- Pour stockage: -40° à +70°C

Tension aux vibrations:
- Selon IEC 6586-2-27
 - 25 cycles par heure entre +10°C et -50°C, pour un produit avec tête ZE 24: 20 g

Protection contre les chocs électriques:
- Classe II selon IEC 61140 et NF C 20-039 pour XCK P et XCK T
- Classe I selon IEC 61439 et NF C 30-039pour XCK D

Degre de protection:
- IP 65 et IP 67 selon IEC 65836 : IK 04 selon EN 60529 pour XCK D

Fidélité:
- 0.1 mm sur les points d'inclinaison, ± 1 mm de manœuvre pour tête à poussoir en lourd

Extrêmes de câble ou sortie connecteur:
- Selon modèle
 - Extrêmes flexibles pour prise-éclipses 14 ou 15, ou filetage ISO M 8 x 1.5, ISO M 8 x 1.5
 - Suralé 1/8NF ou suralé FF 1/8 (GR) ou suralé par connecteur M12

Matiériaux:
- XCK D corps et têtes en zamak, XCK P et XCK T corps en plastique et têtes en zamak

Caracteristiques de l'élément de contact

Caractéristiques assignées d'emploi:
- XCK P
- ~ AC-15: A100 (Ue = 240 V, Ie = 3 A, t = 10 A)
- ~ DC-13: I100 (Ue = 250 V, Ie = 0.27 A)

Tension assignée d'isolement:
- XCK P
- ~ AC-15: R300 (Ue = 240 V, Ie = 1.5 A, t = 5 A)
- ~ DC-13: I300 (Ue = 250 V, Ie = 0 A)

Tension assignée de tesse aux chocs:
- XCK P
- ~ Umax = 9 kV selon IEC 60841-1, IEC 60844

Positivité (selon modèle):
- Contact à manœuvre positive d'ouverture selon IEC 60947-5-1 annexe K, EN 60947-5-1

Résistance entre bornes:
- ≤ 25 m según IEC 60852-7 catégorie 3

Protection contre les courts-circuits:
- Carbone résistante 10 A 60 g

Raccordement (sur bornes à vis stières):
- XCK5 P151 et XCKS P141
- Capacité de serrage min.: 1 x 0.34 mm², max.: 2 x 1.5 mm²

Vitesse d'attaque minima
- (pour tête à poussoir en lourd):
- XCK5 P141 et XCKS P: 0.01 minute
- XCKB P141 et XCKW P: 8 minutes

Convivialité électrique:
- Selon IEC 60847-5-1 annexe C
- Catégories d'emploi AC-15 et DC-13
- Fréquence max.: 3000 cycles de manœuvres/heure
- Facteur de puissance: 0.9

Courant alternatif
- ~ 50 Hz, mm circuit vif

Courant continu
- Puissance couplée pour 5 millions de cycles de manœuvres.
- Tension: V 24 48 120
- mm: W 10 7 4

Courant alternatif
- ~ 50 Hz, mm circuit vif

Courant continu
- Puissance couplée pour 5 millions de cycles de manœuvres.
- Tension: V 24 48 120
- mm: W 4 3 5

Avec télé à mouvement rechigne (fixation par la tete ou le corps)

XCK T
b. 7. Détecteur du poste de chargement XUM-L 0259 Télémécanique
Détecteur photoélectrique Reflex Polarisé

<table>
<thead>
<tr>
<th>Environnement / Environment</th>
<th>Caractéristiques électriques / Electrical characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température ambiante / Ambient temperature</td>
<td>Type de détecteur / Type of detector</td>
</tr>
<tr>
<td>Opération : -25 → +55 °C</td>
<td>DC, 3 fils, statique</td>
</tr>
<tr>
<td>Stockage : -40 → +70 °C</td>
<td>DC, 3-wire type, Solid state</td>
</tr>
<tr>
<td>Tenue aux vibrations / Vibration resistance</td>
<td>Limits de tension / Voltage limits</td>
</tr>
<tr>
<td>7g (F : 10 → 55 Hz)</td>
<td>10…30 V DC</td>
</tr>
<tr>
<td>(IEC 68-2-6)</td>
<td></td>
</tr>
<tr>
<td>Tenue aux chocs / Shock resistance</td>
<td>Courant commuté / Switching capacity</td>
</tr>
<tr>
<td>50g ; 3 axes ; 3 fois.</td>
<td>100 mA</td>
</tr>
<tr>
<td>50g ; 3 axes ; 3 times.</td>
<td></td>
</tr>
<tr>
<td>Degré de protection / Degree of protection</td>
<td>Courant consommé sans charge / Current consumption no-load</td>
</tr>
<tr>
<td>IP 67 (IEC 529)</td>
<td>≤ 35 mA</td>
</tr>
<tr>
<td>IP 65 (connecteur / connector)</td>
<td></td>
</tr>
<tr>
<td>Matériaux / Materials</td>
<td>Retards / Delays</td>
</tr>
<tr>
<td>Boîtier / Enclosure : ABS/PC</td>
<td>≤ 1 ms</td>
</tr>
<tr>
<td>Lentilles / Lenses : PMMA</td>
<td>≤ 1 ms</td>
</tr>
<tr>
<td>Câble / Cable : PVC</td>
<td>≤ 1,5 ms (barrage)</td>
</tr>
<tr>
<td>Mise en œuvre / Setting-up procedure</td>
<td></td>
</tr>
</tbody>
</table>

Tableau de fonctionnement / Function table

Système de proximité / Diffuse system

<table>
<thead>
<tr>
<th>Absence d'objet dans le faisceau / No object present within the beam</th>
<th>Présence d'objet dans le faisceau / Object present within the beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etat de la sortie / Output state</td>
<td>Etat de la sortie / Output state</td>
</tr>
<tr>
<td>DEL jaune / Yellow LED</td>
<td>DEL jaune / Yellow LED</td>
</tr>
</tbody>
</table>

Fonction claire / Light-on switching

<table>
<thead>
<tr>
<th>Fonction claire / Light-on switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
</tr>
</tbody>
</table>

Système reflex et barrage / Reflex and thru-beam systems

<table>
<thead>
<tr>
<th>Absence d'objet dans le faisceau / No object present within the beam</th>
<th>Présence d'objet dans le faisceau / Object present within the beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etat de la sortie / Output state</td>
<td>Etat de la sortie / Output state</td>
</tr>
<tr>
<td>DEL jaune / Yellow LED</td>
<td>DEL jaune / Yellow LED</td>
</tr>
</tbody>
</table>

Fonction claire / Light-on switching

<table>
<thead>
<tr>
<th>Fonction claire / Light-on switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
</tr>
</tbody>
</table>

Fonction sombre / Dark-on switching

<table>
<thead>
<tr>
<th>Fonction sombre / Dark-on switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
</tr>
</tbody>
</table>

Fréquence maxi de commutation / Maximum switching frequency

<table>
<thead>
<tr>
<th>500 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Hz (barrage)</td>
</tr>
</tbody>
</table>
A - MONTAGE -

Sortie par | entraxe fixation (E) | vis (mm)
câble 7,5 à 9 | Ø3
connecteur 18,4 à 26 | Ø4

B - BRANCHEMENT -

• Avant la mise sous tension, vérifier la compatibilité entre la tension d'alimentation et la tension nominale de l'appareil indiquée sur l'étiquette et celle de la charge.
• Effectuer les programmations hors tension.
• Versions connectiques : utiliser les câbles XSZ-CS141 : sortie droite XSZ-CS151 : sortie coudée

Progr. claire / Light-on switching programmed

Sortie PNP
PNP output

Sortie NPN
NPN output

Progr. sombre / Dark-on switching programmed

Sortie PNP
PNP output

Sortie NPN
NPN output

C - REGLAGE -

Distances maximales :
• Reflex XUM-L-0451 : 0,1 à 4 m sur XUZ-CS0/C80
• Reflex polarisé XUM-L-0250 : 0,1 à 2 m sur XUZ-C50/C80
• Proximité XUM-L-4055 : 40 cm sur papier blanc
90 % (20 x 20 cm)
XUM-L-1055 : 10 cm sur papier blanc
90 % (10 x 10 cm)
• Barrage XUM-L-0854 + XUM-LH0803 : 8 m
Si nécessaire, ajuster la sensibilité à l'aide du potentiomètre de réglage. Utilisez pour cela le tournevis fourni avec l'appareil.

D - DIODE D'ALARME -

L'appareil est muni d'une diode rouge d'alarme qui s'allume en cas d'instabilité de la détection. Un fonctionnement stable sera obtenu lorsque cette diode est éteinte. Il est toutefois normal que cette diode s'allume de façon fugitive à l'occasion des commutations. Cette diode d'alarme clignote quand le produit est placé en surcharge ou en court-circuit.

Diode d'alarme / verification of correct operation LED

Niveau du signal
Signe de niveau
DEL rouge
Red LED
Alignement optimum
Optimum alignment

Courbes / Detection curves
b. 8. Génératrice tachymétrique Parvex axe Z:

GÉNÉRATRICE TACHYMÉTRIQUE

Montées sans accouplement, donc très rigides, les génératrices tachymétriques usinées au micron donnent une image fidèle de la vitesse instantanée, du passage à vitesse nulle et du sens de rotation

<table>
<thead>
<tr>
<th>Moteur</th>
<th>Tachy</th>
<th>F.E.M.</th>
<th>Résistance à 25°C</th>
<th>Inertie</th>
<th>Masse</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX1/RX3</td>
<td>TBN206</td>
<td>6</td>
<td>47</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>RX5 - RX6</td>
<td>TBN306</td>
<td>6</td>
<td>14.6</td>
<td>2.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

c. Éléments de transmission et d’adaptation

c. 1. Poutre de guidage X

POUTRE CTP1

Dossier technique Transstockeur / version 2006
Académie de Strasbourg
c. 2. Chariot CTP 1 (Translation X)

CHARIOT TOUTES POSITIONS

CTP1 / CTP1D / CTP2 / CTP2D

Utilisation courante

Déplacement répété d'un outil
- torche de soudage,
- tête de soudage,
- pistolet de métallisation,
- pistolet de peinture,
- distributeur de colle,
- etc.

Manutention automatisée;
Reglage rapide en position et sur longue course;
Etc.;

Constitution de machines-outils :
- machines de meulage ou polissage,
- machines de perçage,
- machines de soudage, ou coupage
- machines à bois.

Caractéristiques
- s'utilise en toute positions;
- travaille dans des conditions rigoureuses sans précautions particulières;
- très faible effort de déplacement;
- guidage précis sur les rails par galets à billes;
- rattrapage du jeu par excentrique;
- galets étanches graissés à vie;
- ne demande aucun entretien;
- dépannage éventuel très facile;
- perçage sur les trois faces pour fixation d'autres éléments modulaires du catalogue;
- chariot en alliage léger moulé.

Charges dynamiques

pourant être appliquées sur les galets du chariot

(F en daN-C en m.daN)

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>POIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>30</td>
<td>60</td>
<td>60</td>
<td>30</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>3,2</td>
<td>kg</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>3,2</td>
<td>kg</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
<td>90</td>
<td>180</td>
<td>90</td>
<td>28</td>
<td>16</td>
<td>16</td>
<td>28</td>
<td>14</td>
<td>9</td>
<td>kg</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
<td>90</td>
<td>180</td>
<td>90</td>
<td>50</td>
<td>22</td>
<td>22</td>
<td>50</td>
<td>25</td>
<td>13</td>
<td>kg</td>
</tr>
<tr>
<td>450</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>50</td>
<td>95</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>23</td>
<td>kg</td>
</tr>
</tbody>
</table>

POUR COMMANDER :

- Chariot CTP1 nu 9120-6012
- Chariot CTP1 renforcé 9120-6739
- Chariot CTP1D 9120-6320
- Chariot CTP2 9120-6081
- Chariot CTP2D 9120-6462

Charge maxi por galet

Les charges indiquées ci-dessus sont données à titre indicatif. Veillez à ce que les efforts sur les galets ne dépassent pas les valeurs du tableau ci-contre (charges sur rails non traités). Pour charges sur rails traités, nous consulter.
c. 3. Guidage linéaire INA MLF 52145 ZR (Translation Z)

Chariot
Le chariot est composé d'un corps en profil d'aluminium anodisé, de quatre axes, de quatre galets de roulement, et d'un racleur-graissage en matière plastique à chaque extrémité. Le chariot est réglé sans jeu par l'intermédiaire de deux axes excentrés. Le système de tension de la courroie cranée est intégré aux deux extrémités du chariot. Pour la dimension 52, 3 chariots sont disponibles dans plusieurs longueurs (tableau des dimensions, voir en page 56).

Lubrification et étanchéité
Les racleurs-graissage assurent l'étanchéité du chariot. Le chariot peut être lubrifié par l'intermédiaire de quatre graissages situés à chaque extrémité.

Fixation
Le chariot est pourvu de six taraudages. Pour des chariots plus longs, les taraudages peuvent être jusqu'au nombre de dx (voir tableau des dimensions en page 57).

Corps du module (poutre ou profil)
La poutre LFS-M est constituée d'un corps en aluminium anodisé dans lequel sont serrés deux arbres en acier trempé et rectifié. Le corps du module est particulièrement résistant à la flexion et à la torsion. De par sa section, il permet, dans certains cas, même pour des longueurs importantes, de travailler sans appuis intermédiaires.
La longueur maximale de la poutre en un seul élément est de 8 000 mm. Pour des longueurs supérieures, plusieurs profils seront abutés. Chaque zone de jonction est rigide grâce à l'aide de deux plaques aluminium graissées, fixées à l'aide de vis. Des rainures en T permettent une fixation simple et facile du module sur la construction adjacente. Les rainures sont dimensionnées pour des vis selon DIN 787 et des écrous en T selon DIN 508.

Palier de renvoi
Pour les modules des séries MLF-ZR, les paliers de renvoi sont réalisés en profil d'aluminium anodisé. Les poulies cranées sont montées sur des arbres équipés de roulements à billes lubrifiés à vie. L'ensemble assure le renvoi de la courroie cranée. Des brosses empêchent la pénétration d'impuretés.

Module de guidage linéaire à galets avec entraînement par courroie cranée
Série MLF-ZR

<table>
<thead>
<tr>
<th>Tableau des dimensions</th>
<th>(en mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Désignation</td>
<td>Masses</td>
</tr>
<tr>
<td></td>
<td>D_{MLF}</td>
</tr>
<tr>
<td>MLF 52 145 ZR</td>
<td>$B_{MLF} = 230 \times 0,0128 + 10,8 \times 2,2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courroie cranée/poulie cranée</th>
</tr>
</thead>
<tbody>
<tr>
<td>Désignation</td>
</tr>
<tr>
<td>MLF 52 145 ZR</td>
</tr>
</tbody>
</table>
4. SCHEMAS ELECTRIQUES ET PNEUMATIQUES, PLANS D’IMPLANTATION ET NOMENCLATURE

<table>
<thead>
<tr>
<th>Schema Description</th>
<th>Folio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema de Puissance</td>
<td>01</td>
</tr>
<tr>
<td>Schema de Commande 1</td>
<td>02</td>
</tr>
<tr>
<td>Schema de Commande 2</td>
<td>03</td>
</tr>
<tr>
<td>Schema Variateur</td>
<td>04</td>
</tr>
<tr>
<td>Schema Entree Automate Carte 1</td>
<td>05</td>
</tr>
<tr>
<td>Schema Entree Automate Carte 2</td>
<td>06</td>
</tr>
<tr>
<td>Schema Sortie Analogique</td>
<td>07</td>
</tr>
<tr>
<td>Schema Cablage Entree Comptage</td>
<td>08</td>
</tr>
<tr>
<td>Schema Barriere Optique</td>
<td>09</td>
</tr>
<tr>
<td>Pupitre</td>
<td>10</td>
</tr>
<tr>
<td>Schema Bornier Axe X/Z</td>
<td>11</td>
</tr>
<tr>
<td>Schema Bornier</td>
<td>12</td>
</tr>
<tr>
<td>Schema Bornier Points de Measure</td>
<td>13</td>
</tr>
<tr>
<td>Schema Pneumatique</td>
<td>14</td>
</tr>
</tbody>
</table>
Dossier technique Transstockeur / version 2006
Académie de Strasbourg
Dossier technique Transstockeur / version 2006
Académie de Strasbourg
5. RAPPORT D’ESSAIS MECANIQUES ET ELECTRIQUES

E. POINT DE VUE TEMPOREL

1. NOTE DE MISE EN MARCHE

 a. Procédure de mise en marche

 - Appuyer sur le bouton poussoir "MARCHE", le voyant vert du pupitre de commande s'allume, l’ATV18 est sous tension et son afficheur indique RDY; la carte électronique de commande de la motorisation courant continu est sous tension, son voyant "POWER ON" est allumé.

 Le terminal de dialogue indique "SELECTIONNER UN MODE"
b. Identification des signaux de la colonne de signalisation.

ALLUME: Un ou plusieurs éléments de la ligne de sécurité actifs

ALLUME: Système en Mode Automatique

CLIGNOTANT: Système en Mode Mise en Référence et en Position Initiale

ALLUME: Système en Mode Manuel

CLIGNOTANT: Système en Mode Mise en Référence

ALLUME: Système Sous-tension
c. Mode manuel

Le fonctionnement en mode manuel est sous la responsabilité expresse de l'opérateur.

- Actionner la touche F1 "ECH" du terminal de dialogue.
- Actionner la touche F7 "MANUEL"
 l'afficheur indique "MODE MANUEL"
 et le voyant orange de la colonne de signalisation s'éclaire.
- A l'aide des touches F9, F10, F11, F12, vous pouvez commander manuellement le déplacement des Axes X et Z, la commande de l'Axe pneumatique Y n'étant pas accessible dans ce mode.

d. Mise en référence

Le SYSTEME TRANSSTOCKEUR étant doté de capteurs de positionnement pour les Axes X et Z de type incrémental, il est nécessaire de réaliser une mise en référence de la partie opérative avant de lancer le cycle automatique.

- Actionner le SYSTEME en mode manuel pour amener la fourche face à l'emplacement 5.
- Appuyer sur la touche F1 "ECH"
 Le terminal de dialogue indique : "SELECTIONNNER UN MODE"
- Actionner la touche F8 "MISE EN REF"
 Le terminal de dialogue indique : "MODE MISE EN REF" et le voyant orange de la colonne de signalisation clignote.

 Appuyer sur les touches de déplacement F10 et F11 pour amener la fourche en position initiale à l'emplacement du poste Prise / Pose de la fourche.
 Maintenir une pression continue jusqu'à l'arrêt de l'axe considéré.
 Lorsque le transstockeur est en position initiale, le voyant vert de la colonne de signalisation clignote et le terminal de dialogue indique : "TRANSSTOCKEUR EN POSITION INITIALE".

 La mise en référence est terminée, le SYSTEME peut être exploité en mode automatique.

e. Mode configuration

<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>:</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(STOCKAGE AFFECTE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXE X Acc</td>
<td>:</td>
<td>2000 ms</td>
</tr>
<tr>
<td>AXE X Vmax</td>
<td>:</td>
<td>50%</td>
</tr>
<tr>
<td>AXE X Gain</td>
<td>:</td>
<td>6</td>
</tr>
<tr>
<td>AXE Z Acc</td>
<td>:</td>
<td>2000 ms</td>
</tr>
<tr>
<td>AXE Z Vmax</td>
<td>:</td>
<td>50%</td>
</tr>
<tr>
<td>AXE Z Gain</td>
<td>:</td>
<td>2</td>
</tr>
<tr>
<td>SIMULTANEE</td>
<td>:</td>
<td>0</td>
</tr>
<tr>
<td>PARAMETRAGE</td>
<td>:</td>
<td>0</td>
</tr>
<tr>
<td>(USINE)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Les paramètres défilent en appuyant sur les flèches \leq et \geq du terminal de dialogue.

e. 1. Paramètre CONFIGURATION

0 STOCKAGE AFFECTE
Pour le stockage, le bac gerbable présent au poste de prise / pose de la fourche, est véhiculé vers l'emplacement saisi par l'opérateur.
Pour le déstockage, le bac gerbable présent à l'emplacement saisi par l'opérateur est véhiculé vers le poste de prise / pose de la fourche.

1 STOCKAGE BANALISE
Pour le stockage, le bac gerbable présent au poste de prise / pose de la fourche, est véhiculé vers le premier emplacement libre dans l'ordre croissant.
Il faut impérativement saisir un code non nul pour identifier le bac.
Pour le déstockage, le bac gerbable stocké et identifié par la saisie de son code par l'opérateur, sera véhiculé vers le poste de prise / pose de la fourche.

e. 2. Paramètres AXE X Acc et AXE Z Acc
Ces paramètres permettent de régler les temps d'accélération pour atteindre la vitesse maximale.
Ces paramètres peuvent varier de 0 à 9900 ms par incrément de 100 ms.

e. 3. Paramètres AXE X Vmax et AXE Z Vmax
Ces paramètres permettent de régler la valeur de la vitesse lorsque le SYSTEME se déplace à vitesse constante.
Ces paramètres peuvent varier de 0 à 100% de la vitesse nominale du moteur par incrément de 1%.

e. 4. Paramètres AXE X Gain et AXE Z Gain
Ces paramètres permettent de régler le gain de l'asservissement de position, donc la rapidité du système d'asservissement.
Ces paramètres peuvent varier de 0 à 10 par incrément de 1 unité.

e. 5. Récapitulatifs des réglages

100% V Nominale Moteur

AXE. Vmax

0 AXE. Acc t
e. 6. Paramètre SIMULTANEE

Ce paramètre permet de sélectionner le type de synchronisation des AXES X et Z en déplacement.

0 ALTERNEE
Dans ce cas, les deux axes se déplacent alternativement, un premier axe atteint sa position finale avant la mise en mouvement du second axe.

1 SIMULTANEE
Dans ce cas, les deux axes se déplacent simultanément pour atteindre la position finale. Des contraintes mécaniques interdisent toutefois ce mode de fonctionnement pour l'accès aux emplacements 3, 7, 11 et 15.

e. 7. Paramètre PARAMETRAGE

Ce paramètre permet de choisir le type de paramétrage.

0 USINE
Dans ce cas, les paramètres sont consignés aux valeurs réglées d'usine et reportées §1.6.4. Il est alors impossible de modifier les paramètres.

1 OPERATEUR
Dans ce cas, les paramètres sont configurables suivant les valeurs calculées par l'opérateur.

e. 8. Lecture emplacement

Cette table permet de connaître le contenu du magasin :
• 0 indique que l'emplacement est libre.
• Une valeur non nulle indique que l'emplacement est occupé par un bac gerbable stocké en mode affecté pour la valeur 1 et en mode banalisé pour une valeur différente de 0 ou 1.

f. Mode automatique

Avant toute manoeuvre en mode automatique, il est indispensable de mettre le SYSTEME en référence § Mise en Référence et de le configurer §. Mode configuration avec

Les paramètres usine ou spécifiques à l'opérateur.
• Actionner la touche F1 « ECH ».
• Actionner la touche F2 « AUTO »
 Le SYSTEME commute en mode automatique uniquement si le SYSTEME est en position initiale.
 Le terminal de dialogue indique : « MODE AUTOMATIQUE »
 Le voyant vert de la colonne de signalisation s'éclaire.
f. 1. Chargement - Déchargement des bacs gerbables

CHARGEMENT D'UNE BOITE

- Avec un transstockeur sans option module POSE / DEPOSE :
 Introduire un bac sur le côté gauche du SYSTEME par le convoyeur à rouleaux,
pousser cette boîte en butée à l’emplacement de prise/pose de la fourche.

- Avec un transstockeur avec option module POSE / DEPOSE :
 Positionner la boîte sur le premier emplacement du convoyeur à rouleaux.
 S’assurer que les cellules de détection de présence des bacs situées sur le côté
 droit du tunnel sont bien activées.
 Actionner la touche F6 « E/S »,
 les rouleaux moteurs sont activés, leur arrêt étant contrôlé par la position correcte
 de la boîte en butée devant l’emplacement prise/pose de la fourche.

DECHARGEMENT D'UNE BOITE

- Avec un transstockeur sans option module POSE / DEPOSE :
 Retirer manuellement la boîte située à l’emplacement prise/pose de la fourche.

- Avec un transstockeur avec option module POSE / DEPOSE :
 Le bac gerbable est positionné à l’emplacement prise/pose de la fourche.

 Actionner la touche F6 « E/S ».
 Les rouleaux moteurs sont activés, leur arrêt étant contrôlé par l’activation des deux cellules de détection présence boîte du
 premier emplacement.

f. 2. Stockage

 Actionner la touche F3 « St »

 STOCKAGE AFFECTE
 Le terminal de dialogue indique « STOCKAGE AFFECTE EMPLACEMENT = ».
 Saisir l’emplacement de stockage souhaité.
 Le SYSTEME se met en mouvement.

 STOCKAGE BANALISE
 Le terminal de dialogue indique « STOCKAGE BANALISE CODE BOITE = ».
 Saisir le code du bac gerbable à stocker dans le premier emplacement libre.
 Le SYSTEME se met en mouvement.

f. 3. Déstockage

 Actionner la touche F4 « DST »

 DESTOCKAGE AFFECTE
 Le terminal de dialogue indique « DESTOCK AFFECTE EMPLACEMENT = ».
 Saisir l’emplacement à déstocker.
 Le SYSTEME se met en mouvement.

 DESTOCKAGE BANALISE
Le terminal de dialogue indique « DESTOCK BANALISE CODE BOITE = ».

Saisir le code du bac gerbable à déstocker.

Le SYSTEME se met en mouvement.

REMARQUES:

- Si un bac gerbable est présent à l’emplacement saisi en stockage affecté ou absent de l’emplacement saisi en déstockage affecté, un message apparaît sur le terminal de dialogue : « PRESENCE D’UNE BOITE A CETEMPLACEMENT », ou respectivement « ABSENCE D’UNE BOITE A CET EMPLACEMENT ».

- Si une boîte est absente au poste de chargement / déchargement, en stockage, ou présente au poste de chargement / déchargement, en déstockage, un message apparaît sur le terminal de dialogue : « ABSENCE DE BOITE AU POSTE DE CHARGEMENT/DECHARGEMENT » ou respectivement « PRESENCE DE BOITE AU POSTE DE CHARGEMENT/DECHARGEMENT ».

g. Quelques remarques.

- Lorsque le SYSTEME est en mouvement, tout franchissement de la barrière immatérielle protégeant l’accès du module de POSE / DEPOSE, provoque l’arrêt du SYSTEME.
- En cours de fonctionnement, les touches fonctionnelles sont indiquées par leur voyant rouge.
- Pour modifier une valeur numérique sur le terminal de dialogue, visualiser la valeur sur l’écran, appuyer sur la touche « MOD », saisir la nouvelle valeur, et valider en appuyant sur la touche « ENTER ».

Pour tout complément d’information, consulter la documentation constructeur fournie avec le SYSTEME.

h. Procédure de mise hors énergie

1) Positionner la partie opérative du SYSTEME en position initiale.
2) Actionner le Bouton Poussoir Arrêt et le Bouton Poussoir Arrêt Général.
3) Positionner la commande extérieure de l’interrupteur sectionneur général sur 0, et réaliser sa consignation éventuelle par la pose des cadenas de sécurité.
4) Actionner et verrouiller la vanne d’isolation d’air comprimé.
2. COMPORTEMENT TEMPOREL (GRAFCET, GEMMA)

SOMMAIRE

Programme Fonction d'usage Transstockeur
Affectation des touches et messages du Terminal de Dialogue
Grafcets de gestion
Stockage
Déstockage
Affectation des compteurs
Gestion des consignes de déplacement
Gestion des déplacements

a. Programme fonction d’usage Transstockeur.

STOCKAGE ET DESTOCKAGE DES 18 BACS DU MAGASIN SUR ORDRE DE L’OPÉRATEUR.

STOCKAGE

Deux solutions :

- En mode Manuel, demander un stockage en précisant les coordonnées de l'emplacement désiré. Le bac sera stocké si l'emplacement choisi est libre.

- En mode Automatique, l'automate affectera un emplacement libre dans le magasin.

Si vous disposez du système INDUCTEL, l'automate écrira le code du bac dans la zone mémoire réservée à cet effet.

Vous avez aussi la possibilité de simuler le système INDUCTEL par un jeu de questions réponses.

DESTOCKAGE

Deux solutions :

- En mode Manuel, demander un déstockage en précisant les coordonnées de l'emplacement choisi.

- En mode Automatique, avec ou sans le système INDUCTEL, ou si vous avez choisi de le simuler: sur une demande de déstockage, le code du bac à déstocker sera demandé.
1 - Configuration

0 Mode manuel coordonnée V (Vertical) H (Horizontal)
1 Mode INDUCTEL, avec et sans étiquette
2 Mode simulation INDUCTEL

2 - Modification des temps d’accélération de vitesse MAXI et du gain pour chacun des Axes X et Z

2.1 Réglages:
• Réglage Rampe Accélération AXE X de 0 à 9900 ms.
• Réglage Vitesse Maximum AXE X de 0 à 100%.
• Réglage Gain AXE X de 0 à 10.
• Réglage Rampe Accélération AXE Z de 0 à 9000 ms.
• Réglage Vitesse maximum AXE Z de 0 à 100%.
• Réglage Gain AXE Z de 0 à 10.

2.2 Mouvements simultanés:
Vous avez la possibilité d’avoir des mouvements des deux axes séquentiels l’un après l’autre (code = 0) ou simultanés ensemble (code = 1).

SIMULTANE =

2.3 Récapitulatif des fonctions de configuration du système:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0 / 1 / 2)</td>
<td>(0 à 9900 ms)</td>
<td>(0 à 100%)</td>
<td>(0 à 10)</td>
<td>(0 à 9900 ms)</td>
<td>(0 à 100%)</td>
<td>(0 à 10)</td>
<td>(0 / 1)</td>
</tr>
</tbody>
</table>

Lecture du magasin - bac

NB:
La LED des touches signale le menu disponible.
LISTE DES ENTREES

<table>
<thead>
<tr>
<th>Entrée</th>
<th>Mnémonique</th>
<th>DESIGNATION</th>
<th>N° Fil</th>
</tr>
</thead>
<tbody>
<tr>
<td>% I1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% I1,1</td>
<td>ATU</td>
<td>Arrêt d'urgence</td>
<td>201</td>
</tr>
<tr>
<td>% I1,2</td>
<td>KM1</td>
<td>Contacteur général</td>
<td>202</td>
</tr>
<tr>
<td>% I1,3</td>
<td>RDZ</td>
<td>Variateur AXE Z Prêt</td>
<td>203</td>
</tr>
<tr>
<td>% I1,4</td>
<td>RDX</td>
<td>Variateur AXE X Prêt</td>
<td>204</td>
</tr>
<tr>
<td>% I1,5</td>
<td>KM3</td>
<td>Contacteur Frein AXE Z</td>
<td>205</td>
</tr>
<tr>
<td>% I1,6</td>
<td>KM5</td>
<td>Contacteur Frein AXE X</td>
<td>206</td>
</tr>
<tr>
<td>% I1,7</td>
<td>Z0</td>
<td>RA3 AXE Z en référence (Inductif)</td>
<td>207</td>
</tr>
<tr>
<td>% I1,8</td>
<td>X0</td>
<td>RA4 AXE X en référence (Inductif)</td>
<td>208</td>
</tr>
<tr>
<td>% I1,9</td>
<td>YE</td>
<td>RA5 AXE Y Entrée</td>
<td>209</td>
</tr>
<tr>
<td>% I1,10</td>
<td>YS</td>
<td>AXE Y Sortie</td>
<td>210</td>
</tr>
<tr>
<td>% I1,11</td>
<td>IFDH</td>
<td>Fin de course Haut AXE Z</td>
<td>211</td>
</tr>
<tr>
<td>% I1,12</td>
<td>IFDB</td>
<td>Fin de course Bas AXE Z</td>
<td>212</td>
</tr>
<tr>
<td>% I1,13</td>
<td>IFDD</td>
<td>Fin de course Droite AXE X</td>
<td>213</td>
</tr>
<tr>
<td>% I1,14</td>
<td>IFDG</td>
<td>Fin de course Gauche AXE X</td>
<td>214</td>
</tr>
<tr>
<td>% I1,15</td>
<td>RH1</td>
<td>Info Sens de Marche des Rouleaux</td>
<td>215</td>
</tr>
<tr>
<td>% I3,0</td>
<td>FQ2</td>
<td>Défaut Fusion fusible AXE Z</td>
<td>216</td>
</tr>
<tr>
<td>% I3,1</td>
<td>SEL1</td>
<td>Shunt Fin de Course AXE X</td>
<td>217</td>
</tr>
<tr>
<td>% I3,2</td>
<td>SEL2</td>
<td>Shunt Fin de Course AXE Z</td>
<td>218</td>
</tr>
<tr>
<td>% I3,3</td>
<td>OP Int</td>
<td>Présence boîte Poste Attente INT</td>
<td>219</td>
</tr>
<tr>
<td>% I3,4</td>
<td>OP Ext</td>
<td>Présence boîte Poste Attente EXT</td>
<td>220</td>
</tr>
<tr>
<td>% I3,5</td>
<td>OPP B</td>
<td>Présence boîte Poste chargement/décharg.</td>
<td>221</td>
</tr>
<tr>
<td>% I3,6</td>
<td>OP Ch</td>
<td>Présence Chariot</td>
<td>222</td>
</tr>
<tr>
<td>% I3,7</td>
<td>SCP</td>
<td>Sens de comptage AXE X</td>
<td>223</td>
</tr>
<tr>
<td>% I3,8</td>
<td>I Sec P1</td>
<td>Porte 1 ouverte</td>
<td>224</td>
</tr>
</tbody>
</table>
LISTE DES SORTIES

<table>
<thead>
<tr>
<th>Sortie</th>
<th>Mnémonique</th>
<th>DESIGNATION</th>
<th>N° Fil</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Q2,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Q2,1</td>
<td>Col O</td>
<td>Colonne lumineuse Orange</td>
<td>125</td>
</tr>
<tr>
<td>% Q2,2</td>
<td>Col U</td>
<td>Colonne lumineuse Vert</td>
<td>127</td>
</tr>
<tr>
<td>% Q2,3</td>
<td>Col R</td>
<td>Colonne lumineuse Rouge</td>
<td>129</td>
</tr>
<tr>
<td>% Q2,4</td>
<td>CKM2</td>
<td>Commande Mise sous Tension AXE Z</td>
<td>85</td>
</tr>
<tr>
<td>% Q2,5</td>
<td>CKM4</td>
<td>Commande Mise sous Tension AXE X</td>
<td>97</td>
</tr>
<tr>
<td>% Q2,6</td>
<td>CYEVE</td>
<td>Commande Distributeur AXE Y Entrée</td>
<td>105</td>
</tr>
<tr>
<td>% Q2,7</td>
<td>CYEUS</td>
<td>Commande Distributeur AXE Y Sortie</td>
<td>107</td>
</tr>
<tr>
<td>% Q2,8</td>
<td>CRH1</td>
<td>Commande de sens Rouleau Moteur</td>
<td>109</td>
</tr>
<tr>
<td>% Q2,9</td>
<td>CRH2</td>
<td>Commande Rouleau Moteur 1,2</td>
<td>111</td>
</tr>
<tr>
<td>% Q2,10</td>
<td>CRH3</td>
<td>Commande Rouleau Moteur 3</td>
<td>113</td>
</tr>
<tr>
<td>% Q2,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Q4,0</td>
<td>KM3</td>
<td>Commande Frein AXE Z</td>
<td>95</td>
</tr>
<tr>
<td>% Q4,1</td>
<td>KM5</td>
<td>Commande Frein AXE X</td>
<td>103</td>
</tr>
<tr>
<td>% Q4,2</td>
<td>VAL Z</td>
<td>Validation AXE Z</td>
<td>251</td>
</tr>
<tr>
<td>% Q4,3</td>
<td>RAZ Z</td>
<td>Remise à Zéro AXE Z</td>
<td>253</td>
</tr>
<tr>
<td>% Q4,4</td>
<td>VALXD</td>
<td>Validation Marche Droite AXE X</td>
<td>257</td>
</tr>
<tr>
<td>% Q4,5</td>
<td>VALXG</td>
<td>Validation Marche Gauche AXE X</td>
<td>259</td>
</tr>
<tr>
<td>% Q4,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Q4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
b. Affectation des touches et messages du terminal de dialogue.

Configuration : | ___ | (0 / 1 / 2)

AXE X ACC : | ___ | ___ | ___ | ___ | (0 à 9900 ms)

AXE X Vmax : | ___ | ___ | ___ | (0 à 100%)

AXE X Gain : | ___ | ___ | (0 à 10)

AXE Z ACC : | ___ | ___ | ___ | ___ | (0 à 9900 ms)

AXE Z Vmax : | ___ | ___ | ___ | (0 à 100%)

AXE Z Gain : | ___ | ___ | (0 à 10)

Simultané : | ___ | (0 / 1)

Lecture du magasin - bac

NB:
La LED des touches signale le menu disponible.
TABLE DIALOGUE MAGELIS

<table>
<thead>
<tr>
<th>AFFECTATION</th>
<th>ADRESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOUCHE</td>
<td>% MW 200</td>
</tr>
<tr>
<td>MESSAGE AFFICHE</td>
<td>% MW 201</td>
</tr>
<tr>
<td>MESSAGE A AFFICHER</td>
<td>% MW 202</td>
</tr>
<tr>
<td>LED SUR TOUCHE</td>
<td>% MW 203</td>
</tr>
</tbody>
</table>

TOUCHE MAGELIS

<table>
<thead>
<tr>
<th>AFFECTATION</th>
<th>MOTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOUCHE ECH</td>
<td>% MW 200:X0</td>
</tr>
<tr>
<td>TOUCHE AUTO</td>
<td>% MW 200:X1</td>
</tr>
<tr>
<td>STOCKAGE</td>
<td>% MW 200:X2</td>
</tr>
<tr>
<td>DESTOCKAGE</td>
<td>% MW 200:X3</td>
</tr>
<tr>
<td>CONFIGURATION TS</td>
<td>% MW 200:X4</td>
</tr>
<tr>
<td>E/S BOITE</td>
<td>% MW 200:X5</td>
</tr>
<tr>
<td>MANUEL</td>
<td>% MW 200:X6</td>
</tr>
<tr>
<td>MISE EN REF</td>
<td>% MW 200:X7</td>
</tr>
<tr>
<td></td>
<td>% MW 200:X8</td>
</tr>
<tr>
<td></td>
<td>% MW 200:X9</td>
</tr>
<tr>
<td></td>
<td>% MW 200:X10</td>
</tr>
<tr>
<td></td>
<td>% MW 200:X11</td>
</tr>
<tr>
<td>AFFICHTATION</td>
<td>MOTS</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>F1</td>
<td>ECH % MW 203:X0</td>
</tr>
<tr>
<td>F2</td>
<td>AUTO % MW 203:X1</td>
</tr>
<tr>
<td>F3</td>
<td>STOCKAGE % MW 203:X2</td>
</tr>
<tr>
<td>F4</td>
<td>DESTOCKAGE % MW 203:X3</td>
</tr>
<tr>
<td>F5</td>
<td>CONFIGURATION % MW 203:X4</td>
</tr>
<tr>
<td>F6</td>
<td>E/S BOITE % MW 203:X5</td>
</tr>
<tr>
<td>F7</td>
<td>MANUEL % MW 203:X6</td>
</tr>
<tr>
<td>F8</td>
<td>MISE EN REF % MW 203:X7</td>
</tr>
<tr>
<td>F9</td>
<td>% MW 203:X8</td>
</tr>
<tr>
<td>F10</td>
<td>% MW 203:X9</td>
</tr>
<tr>
<td>F11</td>
<td>% MW 203:X10</td>
</tr>
<tr>
<td>F12</td>
<td>% MW 203:X11</td>
</tr>
</tbody>
</table>
c. Grafcets de gestion

GRAFCET DE SECURITE

0

défaut

1

RAZ

défaut

GRAFCET DE SELECTION DES MODES

10

Manuel + Auto + Mise en Réf.

11

RAZ Variateur

Temporisation 100 ms

12

Mettre sous tension les variateurs

Variateurs sous tension

13

ATTENDRE

14

Mode Manuel

Manuel

15

Mode Mise en Réf.

Mise Réf.

16

ATTENDRE

ECH

17

Mode Automatique

Auto

ECH
GRAFCET DE STOCKAGE ET DE DESTOCKAGE

20
Mode Automatique

21
ATTENDRE

22
Saisir les paramètres de stockage

23
Exécuter le déplacement

24
Saisir les paramètres de déstockage

25
Exécuter le déplacement

26
Message d’erreur

Emplacement libre
Emplacement occupé
Emplac. inoccupé

Fin déplacement
Temporisation de 4s

Fin déplacement
d. Stockage

Actions à exécuter sur l'Etape X22:

CAS D'UN STOCKAGE AFFECTE:
Saisir la variable VALEUR (Emplacement: compris entre 1 et 18)
Vérifier l'absence d'un bac à l'emplacement demandé.

CAS D'UN STOCKAGE BANALISE:
Saisir la variable VALEUR (Code Bac: compris entre 2 et 9999)
Rechercher un emplacement libre.

d. 1. Stockage affecté
(Configuration % MW 50 = 0): Sous-Programme SR0

- **BUT:**
 Vérifier si l'emplacement(% MW 7) est libre

- **DECLARATION DE LA TABLE DES EMBLACEMENTS:**
 % MW 10 à % MW 27

- **DECLARATION DE LA TABLE DES QUANTITES:**
 % MW 30 à % MW 47

- **ALGORITHME:**
 Si l'étape X22 est activée et Configuration = 0
 ALORS
 % MW 7 ← valeur emplacement (Index)
 % MW 28 ← % MW 10 [% MW 7]
 FIN SI

 SI % MW 28 = 0 ALORS retourner Emplacement libre
 SI % MW 28 > 0 ALORS retourner Emplacement occupé

- **BUT:**
 Mise à jour des tables des emplacements et des quantités pendant le stockage.

- **ALGORITHME:**
 % MW 10 [% MW 7] ← 1 (Réervation de l'emplacement)
 % MW 30 [% MW 7] ← % MW 9 (Mise à jour de la quantité du bac stocké)
d. 2. Stockage banalisé
(Configuration % MW 50 = 1): Sous-Programme SR1

- **BUTS**:
 Recherche d'un emplacement libre par l'utilisation de la fonction:

 FIND - EQW:
 Recherche de la position dans une table de mots du premier mot égal à la valeur donnée

- **ALGORITHME**:

 Si l'étape X22 est activée et Configuration = 1

 ALORS
 % MW 7 : = FIND - EQW (% MW 10:18, % MW 6)

 FIN SI

 Si % MW 7 \(\geq 0\) **ALORS** Il existe un emplacement libre et l'adresse de cet emplacement est contenue dans % MW 7

 Si % MW 7 = -1 **ALORS** Il n'y a plus d'emplacement libre dans le TRANSSTOCKEUR

- **BUT**:
 Mise à jour des tables des emplacements et des quantités pendant le stockage.

- **PARAMETRES SAISIS PAR L'OPERATEUR**:

 % MW 8 = Valeur du Code Bac
 % MW 9 = Valeur de la Quantité

- **ALGORITHME**:

 % MW 10 [% MW 7] \(\leftarrow\) % MW 8 (Réservation de l'emplacement)
 % MW 30 [% MW 7] \(\leftarrow\) % MW 9 (Mise à jour de la quantité du bac stocké)
e. Destockage

Actions à exécuter sur l'Etape X24:

CAS D'UN DESTOCKAGE AFFECTE:
Saisir la variable VALEUR (Emplacement: compris entre 1 et 18)
Vérifier la présence du bac à l'emplacement demandé.

CAS D'UN DESTOCKAGE BANALISE:
Saisir la variable VALEUR (Code Bac: compris entre 2 et 9999)
Vérifier l'existence du code demandé dans le magasin.

e. 1. Déstockage affecté
(Configuration % MW 50 = 2): Sous-Programme SR2

- **BUT:**
 Vérifier la présence du bac

- **ALGORITHME:**

 SI l'étape X24 est activée et Configuration = 0 et % MW10 [% MW 7] > 0
 ALORS Présence du bac
 FIN SI

 SI l'étape X24 est activée et Configuration = 0 et % MW10 [% MW 7] = 0
 ALORS Absence du bac
 FIN SI

e. 2. Déstockage banalisé
(Configuration % MW 50 = 3): Sous-Programme SR3

- **BUT:**
 Recherche de l'existence du code désigné par l'opérateur dans la Table des emplacements.

- **ALGORITHME:**

 SI l'étape X24 est activée et Configuration = 1
 ALORS % MW 7 := FIND - EQW (% MW 10:18, % MW 8)
 FIN SI

 SI % MW 7 ≥ 0 ALORS Code bac trouvé dans la Table et l'adresse de ce code est contenue dans % MW 7 (Index de la table des emplacements)
 SI % MW 7 = -1 ALORS Code bac inexistant dans la Table → Erreur
Les valeurs en point ont été relevées sur un système particulier : elles peuvent différer sur un autre modèle.

TYPE DE LA LOI DE VITESSE MISE EN ŒUVRE SUR LES AXES X ET Z

REMARQUE: Pour la translation AXE X, le calcul est identique de part et d'autre du point d'origine. La discrimination du sens est obtenue par activation des entrées RW ou FW du variateur.

CYCLE DE STOCKAGE

CYCLE DE DESTOCKAGE

Dossier technique Transstockeur / version 2006
Académie de Strasbourg
f. Affectation des compteurs

→ **AXE Z** Fonction compteur / décompteur
→ **AXE X** Fonction compteur

L’information du sens de déplacement sur Entrée
Automate confirme le sens du déplacement

g. Gestion des consignes de déplacement

g. 1. Adresse des compteurs

- **AXE Z**
 - cntz → % ID 0.11
 - Validation → % Q 0.11.0
 - RAZ → % Q 0.11.1

- **AXE X**
 - cntx → % ID 0.12
 - Validation → % Q 0.12.0
 - RAZ → % Q 0.12.1

g. 2. Principe de déplacement relatif pour la prise et la pose d’un bac

Consigne à atteindre (%MW 82) ← Valeur actuelle du compteur (cntz) ± variation du déplacement (% MW 80), en fonction de l’action à réaliser.
La variation de déplacement est paramétrable dans le programme et réglée par défaut à 60 impulsions du codeur.

g. 3. Envoi des valeurs de consigne position des axes X et Z

- **AXE X**
 - SI % MW 7 = 3, 7, 11, 15 ALORS % MW 85 ← 0
 - SI % MW 7 = 2, 6, 10, 14, 0, 4, 8, 12, 16 ALORS % MW 85 ← 323
 - SI % MW 7 = 1, 5, 9, 13, 17 ALORS % MW 85 ← 646

- **AXE Z**
 - SI % MW 7 = 0,1 ALORS % MW 84 ← 0
 - SI % MW 7 = 2, 3, 4, 5 ALORS % MW 84 ← 270
 - SI % MW 7 = 6, 7, 8, 9 ALORS % MW 84 ← 530
 - SI % MW 7 = 10, 11, 12, 13 ALORS % MW 84 ← 790
 - SI % MW 7 = 14, 15, 16, 17 ALORS % MW 84 ← 1060

Si l’étape X33 ou X42 est activée

ALORS Consigne de l’Axe X ← % MW 85
Consigne de l’Axe Z ← % MW 84

FIN SI
Si l’étape X37 est activée

ALORS

Consigne de l’Axe X ← % MW 84

SI Stockage en cours **ALORS** CONSIGNE AXE Z ← 0

SI Déstockage en cours **ALORS** CONSIGNE AXE Z ← 60

FIN SI

(cf page 18)

DESCRIPTION DU CYCLE POUR STOCKAGE ET DESTOCKAGE

CYCLE DE STOCKAGE

CYCLE DE DESTOCKAGE
X25 (Destockage)

42 ATTENDRE Temporisation

X23 (Stockage)

31 Sortir AXE Y cntz + MW80 — MW82

Y sorti

32 Monter AXE Z (prise bac)

(cntz ≥ MW82)

33 Rentrer AXE Y

Axe Y rentré

34 Déplacer les AXES

fin de déplacement AXES (X53 . X73)

35 Sortir AXE Y

[SI X25 actif ALORS MW 82 : = cntz + MW 80
[SI X23 actif ALORS MW 82 : = cntz - MW 80

AXE Y sorti

36 AXE Z Monter (Stockage)

Descendre (Destockage)

AXE Z en position (X25.cntz ≥ MW 82 + X23.cntz ≤ MW 82)

37 Rentrer AXE Y

AXE Y rentré

38 Déplacer les AXES

Stockage terminé (X63.X83.X23)

Destockage terminé (X63.X83.X25)

39 Sortir AXE Y

Axe Y sorti

40 Descendre AXE Z

AXE Z en position initiale

41 Rentrer AXE Y

AXE Y rentré
Modes de fonctionnement

Mode Alternatif

Z puis X

- Z puis X, Mw = 0

Mode Simultané

Z et X

- Z et X, Mw = 1

Mécanismes

- Cons = 0
- Cons > 0

Prise de position

- Position entreprise
- Dépose le variateur
- Actionner le frein

Temporisation

- Temporisation sur
- Attendez

Diagramme des Axes

- ** Axe Z (▲)**
 - Cons = 0
 - Cons > 0
 - Valider variateur
 - Position entreprise
 - Temporisation sur
 - Attendez

- **Axe Z (▲)**
 - Cons = 0
 - Cons > 0
 - Valider variateur
 - Position entreprise
 - Temporisation sur
 - Attendez

- **Axe X (▲)**
 - Cons = 0
 - Cons > 0
 - Valider variateur
 - Position entreprise
 - Temporisation sur
 - Attendez

- **Axe X (▲)**
 - Cons = 0
 - Cons > 0
 - Valider variateur
 - Position entreprise
 - Temporisation sur
 - Attendez
F. POINT DE VUE ORGANISATIONNEL
G. DOCUMENTS D’EXPLOITATION

1. NOTICE DE MISE EN SERVICE

 a. Vérifications MECANIQUES OU ELECTRIQUES

 • S'assurer qu'aucun obstacle n'entraîne, ni ne bloque le déplacement des Axes du SYSTEME TRANSSTOCKEUR TS.

 b. Mise sous tension

 • S'assurer que l'alimentation en air comprimé est correcte (3 bar, réglable par le régulateur/filtre situé sous le pupitre de commande) et libérer la vanne d'isolement.
 • Positionner la commande manuelle de l'interrupteur sectionneur sur la position 1; l'automate et le terminal de dialogue sont sous tension, ce dernier effectue son auto-test (voir Notice Constructeurs), le voyant blanc « SOUS-TENSION » et le voyant blanc de la colonne de signalisation sont allumés.
 • Appuyer sur le bouton « TEST LAMPES » pour vérifier le bon fonctionnement des voyants du pupitre et de la colonne de signalisation.
 • Libérer l'arrêt général.
 • Le terminal de dialogue indique « GTI SYSTEMES SYSTEME TRANSSTOCKEUR ».

REMARQUE:
Si le voyant rouge de la colonne de signalisation est allumé, cela signifie qu'une sécurité est actionnée, vérifier que l'arrêt général n'est pas actionné et que les portes d'accès au SYSTEME sont bien fermées.

2. NOTICE DE MAINTENANCE

Les opérations de maintenance devront être effectuées sur la machine à l'arrêt et sous la responsabilité d'une personne chargée d'intervention (habilitation BR).

S'ASSURER DU RESPECT DE LA PROCEDURE DE MISE HORS ENERGIE (Voir § 1.6.8).

L'accès aux parties électriques sous tension, ou la dépose des carters fixes de protection, devra être réalisé par ou sous la responsabilité d'une personne chargée d'intervention (habilitation BR).

La machine ne pourra être utilisée par un opérateur que lorsque les carters seront correctement refixés et les portes des coffrets électriques verrouillées.
a. Entretien périodique

- Après un arrêt prolongé (congés, etc...), reprendre la procédure générale de mise en service et s’assurer du fonctionnement correct du système avant son utilisation normale.
- La pile de sauvegarde de l’automate programmable industriel API possède une autonomie d’environ 1 an. S’assurer, en cas d’arrêt prolongé, de la présence du programme, et éventuellement réaliser une nouvelle implantation avec la disquette de sauvegarde.

b. Procédure de dégagement des axes Z et X

- Cette procédure impose une intervention dans le coffret de commande sous tension. L’opérateur devra intervenir dans les règles de l’art, liées à son degré d’habilitation, pour se prémunir des risques électriques.
- Les contacts de sécurité extrême situés sur les Axes coupent la puissance électrique de l’Axe considéré, et le SYSTEME ne peut plus évoluer.
- Pour plus de sécurité (risques de destruction de matériel), cette opération doit être réalisée par deux personnes : une personne qui intervient dans le coffret de commande, et une deuxième qui intervient sur le pupitre de commande.
- Ouvrir la porte du coffret de commande.
- A l’aide du bouton tournant à clé “DEGAGEMENT FIN DE COURSE”, l’opérateur sélectionne l’Axe en défaut, ce qui inhibe les sécurités et qui provoque la remise sous tension de la commande de l’Axe considéré.
- Le deuxième opérateur, à l’aide du clavier, peut réaliser le dégagement de l’Axe du capteur de sécurité extrême.

ATTENTION!

Les sécurités sont occultées, veiller à respecter le sens de déplacement correct de l’Axe (risque de destructions mécaniques).

- Une fois l’Axe dégagé, procéder à la fermeture du coffret de commande, et réinitialiser le SYSTEME.

c. Procédure de dépose / Pose des pignons de levage.

- **DEPOSE DES PIGNONS**
 1) Déposer le codeur incrémental fixé sur l’axe du moteur courant continu de levage. Pour cela, desserrer les deux vis de blocage sur l’Axe (accès par les rainures du codeur). *Outil tournevis cruciforme.*
 2) Déposer le Plexiglas de protection des pignons.
 3) Réaliser un repérage sur le pignon haut (entraînement de l’Axe Z) et le déposer. Pour cela, soutenir manuellement le bras Y ; le pignon enlevé, laisser reposer le chariot de levage sur la butée mécanique basse de l’Axe Z.
 4) Réaliser le repérage du pignon moteur et le déposer.

- **REPOSE DES PIGNONS**
 Procédure inverse en respectant les repérages réalisés plus haut.

Voir SCHEMA DE POSE ci-dessous.
d. Montage de pignons pour un rapport de 1.25

Procéder à la dépose des pignons (voir § 1.7.3)

Poser les nouveaux pignons:

Réf. TS19 REP 2 pour le moteur courant continu
Réf. TS19 REP 1 pour l’Axe Z

Compte tenu des données techniques suivantes:

Avance de l’Axe Z: 270 mm/Tour
Hauteur entre deux étagères : 200 mm

Réaliser la modification des paramètres de l’automate programmable suivant les tableaux de correspondance suivants :

d. 1. Codeur 360 pts et Rapport 1

La précision du déplacement linéaire est de: 270/360=0,75 mm/PTS.

Remarque: La position de la pince de saisie est indiquée d’après les données de la page 59

<table>
<thead>
<tr>
<th>ETAGERE</th>
<th>POSITION EN MM</th>
<th>CORRESPONDANCE EN POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A titre d’exemple</td>
<td>pour l’exemple ci contre</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>266</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>534</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>1066</td>
</tr>
</tbody>
</table>
d. 2. Codeur 360 pts et Rapport 1,25

Précision = 270/(360*1,25)= 0,60 mm/PTS.
Donc un codeur de 360 PTS sur l’axe moteur est équivalent à un codeur de 288 PTS sur l’axe Z avec un rapport de 1,25.

<table>
<thead>
<tr>
<th>ETAGERE</th>
<th>POSITION EN MM</th>
<th>CORRESPONDANCE EN POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>213</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>427</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>640</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>853</td>
</tr>
</tbody>
</table>

e. Montage d'un codeur 500 pts

Procéder à la dépose , comme indiqué § 1.7.3.

Compte tenu des données techniques:

Avance de l'Axe Z : 270 mm/Tour
Hauteur entre deux étagères : 200 mm

Il est nécessaire de procéder à l’ajustement des paramètres de l’automate programmable conformément aux tables de correspondance suivantes:

e. 1. Codeur 500 pts et Rapport 1

Précision = 270/500=0.54 mm/PTS.

<table>
<thead>
<tr>
<th>ETAGERE</th>
<th>POSITION EN MM</th>
<th>CORRESPONDANCE EN POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>370</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>740</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>1112</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>1482</td>
</tr>
</tbody>
</table>

e. 2. Codeur de 500 pts et Rapport de 1,25

Précision = 270/(360*0,8) = 0,60 mm/PTS.
Un codeur de 500 PTS sur l’axe moteur est équivalent à un codeur de 400 PTS sur l’axe Z.

<table>
<thead>
<tr>
<th>ETAGERE</th>
<th>POSITION EN MM</th>
<th>CORRESPONDANCE EN POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>296</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>593</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>889</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>1185</td>
</tr>
</tbody>
</table>
f. Procédure de réglage des galets du Chariot AXE X

OUTILS: 1 clé plate de 17
1 clé à tube de 17

1 - Débloquer les 5 excentriques (1) (2) (3).
2 - Monter le chariot sur la poutre (4).
3 - Mettre les 4 galets inférieurs en contact sur le rail avec les excentriques des 2 galets (1).
 Bloquer l'écrou M10 en maintenant l'excentrique en position avec la clé plate de 17.
4 - Même opération sur les 2 galets supérieurs par l'intermédiaire du galet (2) (régler l'excentrique par approche successives).
5 - Opération finale identique au réglage précédent avec les 2 galets (3).
6 - Le chariot doit rouler sur la poutre sans points durs et sans aucun battement.
g. Procédure de réglage du châssis du chariot X

- S'assurer que le SYSTEME TRANSSTOCKEUR TS est positionné sur ses quatre pieds réglables et que les étagères sont parfaitement horizontales, voir § 1.4.3.1.

- Placer un niveau à bulle sur la poutre de l'axe X, réaliser le réglage d'horizontalité par action sur les huit tiges filetées immobilisant les deux supports de poutre, la cote entre le châssis et la face inférieure de chaque support ne devant pas être inférieure à 56mm (risque de blocage du carter de la motorisation de l'axe X lors de son déplacement).

- Placer un niveau à bulle sur l'axe Y et s'assurer de sa parfaite verticalité sur le plan parallèle au plan formé par les étagères. Agir sur les tiges filetées pour affiner le réglage.

- Avant d'immobiliser définitivement les supports s'assurer du parallélisme de l'axe X par rapport aux étagères, l'arrête intérieure de la poutre en alliage léger devant être à 327 mm du fond des étagères (tôle arrière du TRANSSTOCKEUR).

h. Incident de fonctionnement

En cas d'incident de fonctionnement ou de panne:

- Réaliser un diagnostic précis.
- Consulter notre service après-vente, au 04.68.78.93.40.

i. Pièces détachées (Rechange)

PIECES DÉTACHEES
SYSTEME TRANSSTOCKEUR TS *

<table>
<thead>
<tr>
<th>Qté</th>
<th>DESIGNATION</th>
<th>Référence DISTRIBUTEUR</th>
<th>Prix de Vente HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pignon Motoréducteur AXE X</td>
<td>TS13REP1</td>
<td>74,00 €</td>
</tr>
<tr>
<td>1</td>
<td>Pignon AXE Z Rapport 1</td>
<td>TS13REP2</td>
<td>74,00 €</td>
</tr>
<tr>
<td>1</td>
<td>Pignon Motoréducteur AXE Z Rapport 1</td>
<td>TS13REP3</td>
<td>74,00 €</td>
</tr>
<tr>
<td>1</td>
<td>Pignon AXE Z Rapport 1,25</td>
<td>TS19REP1</td>
<td>90,00 €</td>
</tr>
<tr>
<td>1</td>
<td>Pignon Motoréducteur AXE Z Rapport 1,25</td>
<td>TS19REP3</td>
<td>90,00 €</td>
</tr>
<tr>
<td>1</td>
<td>Codeur Incrémental 360pts</td>
<td>GHT406593R360</td>
<td>380,00 €</td>
</tr>
<tr>
<td>1</td>
<td>Codeur Incrémental 500pts</td>
<td>GHT406593R500</td>
<td>380,00 €</td>
</tr>
<tr>
<td>1</td>
<td>AXE Codeur modèle TS</td>
<td>TG04091M4</td>
<td>45,00 €</td>
</tr>
</tbody>
</table>

* Prix de vente au 01/03/2002
Port et Emballage en sus